Transient Interfaces During Immiscible Liquid-Liquid Displacement in Porous Media

1962 ◽  
Vol 2 (02) ◽  
pp. 156-164 ◽  
Author(s):  
H.D. Outmans

Abstract In steady vertical flow, the interface of an immiscible liquid-liquid displacement is horizontal for any flow rate below the critical in non-vertical flow, however, the shape of the interface in the steady state does depend on the flow rate, and the purpose of this paper is to calculate the unsteady interfaces during the transition of one steady state of flow to another. A knowledge of these transient interfaces is of considerable importance in reservoir engineering where the calculation of breakthrough recovery depends on the instant the interface reaches the producing wells and on the shape of the interface at that time. Although the emphasis is put on transient interfaces, which eventually approach stable equilibrium, it is shown that if the displacement exceeds a critical rate no equilibrium is possible. The interface is then unstable and viscous fingers are formed during the displacement. The critical rate and the shape of the transient and equilibrium interfaces are affected by the effective interfacial tension; but since this effective inter facial tension appears in the calculations only in combination with the in verse square of the thickness of the medium, its effect in the reservoir would appear to be negligible compared to its significance in model experiments. Introduction Stability criteria and the early growth of interfacial disturbances in a plane parallel to the boundaries of a dipping formation in which oil is displaced by an incompressible fluid were described in a previous paper. This type of instability is significant in thin reservoirs. However, if the reservoir has appreciable thickness, then interfacial stability in vertical planes, normal to the upper and lower boundaries, also becomes important (the displacement is supposed to be parallel to these vertical planes). The difference between the two stability problems is that, in the first case, the intersections of the interface with planes parallel to the boundaries are normal to the direction of the displacement; in the second case, the intersections, this time with vertical planes, are not normal to the displacement. Instead, they are tilted at an angle which depends on the displacement rate. The tilt of steady interfaces was calculated by Dietz who also determined the critical rate of displacement for stability in the vertical plane by assuming that this rate would coincide with an interfacial tilt equal to the dip of the formation. The critical rate thus calculated is the same as has been found for thin reservoirs (see Eq. 1.1 of Ref. 1 and of the present paper). Dietz's calculation of the stable tilt was verified by laboratory experiments and the agreement was found to be fairly good. It is doubtful, however, that stable tilts actually exist in the reservoir because a change in production rate is not followed by an instantaneous adjustment of the interface to the new rate but, rather, by a transition period during which the interface changes from one equilibrium tilt to the other. The principal objective of this paper has been to describe these transient interfaces without putting any restrictions on the flow conditions or the shape of the interface, as had been done previously. The second objective was to compute the critical velocity, taking into account capillary effects, and the third was to evaluate, at least qualitatively, the shape of the front at rates above the critical, again without making the simplifying assumptions introduced by previous investigators. In the following sections two examples are given of the calculation of interfacial motion. The first describes this motion for an initially horizontal interface in a dipping layer, and the second for a vertical interface in a horizontal layer. The mathematical formulation of the problem is non linear in the boundary conditions, and this prohibits its solution in closed form. Instead, the solution is obtained in the form of higher-order approximations. SPEJ P. 156^

Author(s):  
Changduk Kong ◽  
Hongsuk Roh

A performance simulation model of a turboprop engine, the PT6A-62, which is the power plant of KT-1, was developed to predict the steady-state behaviors using the SIMULINK® model. The SIMULINK model consists of subsystems to represent engine components such as intake, compressor, combustor, compressor turbine, power turbine and exhaust nozzle. For validation, performance parameters calculated using the SIMULINK model were compared with the results using GASTURB model. The steady-state performance analysis using the developed SIMULINK model was performed. Performance parameters, such as the mass flow rate, the compressor pressure ratio, the fuel flow rate, the specific fuel consumption ratio and the turbine inlet temperature, were conducted to evaluate validity of the SIMULINK model at various cases. The first case was the uninstalled condition at various altitudes from sea level to 9144m (30000ft) with fixed M.N. = 0. And the second case was the installed condition at various altitudes from sea level to 7620m (25000ft) with fixed M.N. = 0. The third case was the installed condition at altitudes of 1524m (5000ft) and 3048m (1000ft) and at the M.N. = 0.1, 0.2 and 0.3 in ECS operation ECS. In this investigation, it was confirmed that the results using the SIMULINK model were well agreed with the results using the GASTURB model within maximum 6.5%.


Author(s):  
Tomonari KAWAI ◽  
Katsuhiro ICHIYANAGI ◽  
Takuo KOYASU ◽  
Kazuto YUKITA ◽  
Yasuyuki GOTO

2018 ◽  
Vol 8 (9) ◽  
pp. 1670 ◽  
Author(s):  
Wei Zhong ◽  
Xiang Ji ◽  
Chong Li ◽  
Jiwen Fang ◽  
Fanghua Liu

Sintered metal porous media are widely used in a broad range of industrial equipment. Generally, the flow properties in porous media are represented by an incompressible Darcy‒Forchheimer regime. This study uses a modified Forchheimer equation to represent the flow rate characteristics, which are then experimentally and theoretically investigated using a few samples of sintered metal porous media. The traditional steady-state method has a long testing time and considerable air consumption. With this in mind, a discharge method based on an isothermal chamber filled with copper wires is proposed to simultaneously determine the permeability and inertial coefficient. The flow rate discharged from the isothermal chamber is calculated by differentiating the measured pressure, and a paired dataset of pressure difference and flow rate is available. The theoretical representations of pressure difference versus flow rate show good agreement with the steady-state results. Finally, the volume limit of the isothermal chamber is addressed to ensure sufficient accuracy.


Author(s):  
Xiaofeng Yang ◽  
Zhaohui Chen ◽  
Tang-Wei Kuo

Steady-state port flow simulations were carried out with a commercial three dimensional (3D) Computational Fluid Dynamics (CFD) code using Cartesian mesh with cut cells to study the prediction accuracy. The accuracy is assessed by comparing predicted and measured mass-flow rate and swirl and tumble torques at various valve lifts using different boundary condition setup and mesh topology relative to port orientation. The measured data is taken from standard steady-state flow bench tests of a production intake port. The predicted mass-flow rates agree to within 1% with the measured data between the intermediate and high valve lifts. At low valve lifts, slight over prediction in mass-flow rate can be observed. The predicted swirl and tumble torques are within 25% of the flow bench measurements. Several meshing parameters were examined in this study. These include: inlet plenum shape and outlet plenum/extension size, embedded sphere with varying minimum mesh size, finer meshes on port and valve surface, orientation of valve and port centerline relative to the mesh lines. For all model orientations examined, only the mesh topology with the valve axis aligned closely with the mesh lines can capture the mass-flow rate drop for very high valve lifts due to flow separation. This study further demonstrated that it is possible to perform 3D CFD flow analyses to adequately simulate steady-state flow bench tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
R. Chandra ◽  
V. K. Vijay ◽  
P. M. V. Subbarao

This paper presents the results of an automated water scrubbing system used for enrichment of methane content in the biogas, to produce vehicular grade biomethane fuel. Incorporation of automatic control systems for precisely regulating the water level and maintaining constant operating pressure in the packed bed absorption column of water scrubbing system resulted in steady-state operation of the scrubbing system and a consistent supply of methane-enriched biogas from the gas outlet. The improved automated water scrubbing system was found to enrich 97% methane at an operating column pressure of 1.0 MPa with 2.5 m3/h biogas in-flow rate and 2.0 m3/h water in-flow rate into the scrubbing column unit.


Author(s):  
Kevin Reid ◽  
John Denton ◽  
Graham Pullan ◽  
Eric Curtis ◽  
John Longley

An investigation into the effect of stator-rotor hub gap sealing flow on turbine performance is presented. Efficiency measurements and rotor exit area traverse data from a low speed research turbine are reported. Tests carried out over a range of sealing flow conditions show that the turbine efficiency decreases with increasing sealant flow rate but that this penalty is reduced by swirling the sealant flow. Results from time-accurate and steady-state simulations using a three-dimensional multi-block RANS solver are presented with particular emphasis paid to the mechanisms of loss production. The contributions toward entropy generation of the mixing of the sealant fluid with the mainstream flow and of the perturbed rotor secondary flows are assessed. The importance of unsteady stator wake/sealant flow interactions is also highlighted.


2018 ◽  
Vol 72 (2) ◽  
pp. 59-68
Author(s):  
Tijana Urosevic ◽  
Dragan Povrenovic ◽  
Predrag Vukosavljevic ◽  
Ivan Urosevic

In this paper, the influence of operating parameters (transmembrane pressure, temperature, the flow rate of retentate) on the cross - flow microfiltration of synthetic fruit juice and periodic backwashing with air was examined. In the experiments, the Kerasep W5 ceramic membrane with a separation limit of 0.2 ?m was used. The results of experiments in which different transmembrane pressures were used showed that stationary fluxes, at stationary conditions, after 60 minutes, have similar values. So, it can be concluded that the value of the driving force is irrelevant at steady state conditions. However, until the steady state conditions are established, a positive effect of the increase in the driving force is opposed to the negative effect of the increased polarization resistance, as a result of the driving force increase. Thus, the optimal transmembrane pressure was determined amounting to 2 bars. The optimum temperature of the process of clearing the fruit juices by microfiltration is reported as 55?C. Higher temperatures are not used due to a degrading effect on the chemical composition of the juice and a long microfiltration process. With an increase in the temperature of retentate from 22?C to 55?C, the permeate flux increased up to 60%. Increasing the flow rate of retentate reduces the thickness of the formed layer on the surface of the membrane. Due to limitations of the experimental setup and the large surface area of the membrane, the specific velocity of the retentate was low, so that the effects of cross-flow filtration were absent. The use of cross-flow filtration is one of the main requirements for increasing permeate flux, but in the present case it was in overall insufficient, so we have applied periodic air backwashing for improving fruit juice flux during membrane clarification. With this technique, the deposited layer on the membrane is lifted and the permeate flux is maintained at high levels preventing establishment of the steady state in the low flux zone. The time spent for the periodic backwashing was low as compared to the benefits of the increase in the collected permeate quantity. In all experiments with periodic backwashing with air, the collected permeate quantity is higher for up to 72.5 % as compared to experiments without backwashing. By increasing the backwashing duration, the flux increase is up to 5 %, which can be significant for microfiltration at industrial scale. Therefore, this technique is certainly recommended for microfiltration in the production of fruit juices.


2021 ◽  
Author(s):  
Matthew Davis

A HgCl₂ containing diffusion source was evaluated for its potential usefulness as a calibration source for gaseous oxidized mercury (GOM) measurements. Unlike previous calibration sources described in the literature, this source made use of a flow rate of at least 1 L min-¹, and was maintained at a temperature of as low as - 15oC. Under these conditions, the source was found to emit GOM at an environmentally relevant level of 0.0905 pg s-¹, with a GOM fraction of approximately 78%. The source was found to have a consistent response to temperature, a steady state emission level of Hg could be rapidly established and the source was temporally stable. Duplicate sources were compared with one another and found to emit similar levels of Hg under identical sampling conditions. Various methods of cleaning HgCl₂ contaminated items were tested, with the most successful method using a stannous chloride wash solution.


Sign in / Sign up

Export Citation Format

Share Document