Measuring moisture dynamics to predict fire severity in longleaf pine forests

2002 ◽  
Vol 11 (4) ◽  
pp. 267 ◽  
Author(s):  
Sue A. Ferguson ◽  
Julia E. Ruthford ◽  
Steven J. McKay ◽  
David Wright ◽  
Clint Wright ◽  
...  

To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of fire exclusion has allowed large amounts of pine litter and duff to accumulate. Reintroducing fire to remove excess fuel without killing the longleaf pine trees requires care to burn under litter and duff moisture conditions that alternately allow fire to carry while preventing root exposure or stem girdle. The study site was divided into four blocks that were burned under litter and duff moisture conditions of wet, moist, dry, and very dry. Throughout the 4-month experiment, portable weather stations continuously collected meteorological data, which included continuous measurements of water content in the forest floor material from in situ, time-domain reflectometers. In addition, volumetric moisture samples were collected almost weekly, and pre-burn fuel load and subsequent consumption were measured for each burn. Meteorological variables from the weather stations compared with trends in fuel moisture showed the influence of relative humidity and precipitation on the drying and wetting rates of the litter and duff. Fuel moisture conditions showed significant influence on patterns of fuel consumption and could lead to an understanding of processes that govern longleaf pine mortality.

1992 ◽  
Vol 22 (4) ◽  
pp. 572-581 ◽  
Author(s):  
B. Blackwell ◽  
M.C. Feller ◽  
R. Trowbridge

The ecological effects of different treatments used to convert dense Pinuscontorta var. latifolia Engelm. stands into young P. contorta plantations are determined. The treatments used were felling the trees with a bulldozer and either broadcast burning the slash or bulldozing the slash into windrows, which were then burned. Burns were conducted under different fuel moisture conditions and state of fuel curing to achieve four classes of fire severity. The preburn surface fuel load was relatively high due largely to fallen dead woody materials (10−21 kg/m2). The biomass of the forest floor (5−10 kg/m2) was similar to that of the tree slash (5−13 kg/m2), while the understory vegetation was a minor component (0.3−0.5 kg/m2). The quantity of slash and understory vegetation consumed by burning increased with the preburn mass of the same components. Forest floor consumption depended primarily on the preburn forest floor mass for windrow burns and on forest floor moisture content as well as preburn forest floor mass for broadcast burns. Fire severity generally did not have a strong influence on biomass consumption, although it did significantly influence forest floor consumption. There was a general trend, however, of increasing biomass consumption in broadcast burns with increasing fire severity. Windrow burning consumed more biomass than did broadcast burning under similar weather and fuel moisture conditions. Windrow burning resulted in uniformly high biomass consumption that was relatively independent of fuel moisture over the wide range of fuel moistures studied.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
John R. Butnor ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
C. Dana Nelson

Prescribed fire is an essential tool that is widely used for longleaf pine (Pinus palustris Mill.) stand management; periodic burning serves to reduce competition from woody shrubs and fire-intolerant trees and enhance herbaceous diversity. Low-intensity, prescribed burning is thought to have minimal long-term impact on soil chemistry in southern pine forests, although few studies report the intra-annual variation in soil chemistry after burning. We monitored changes in C, N, oxidation resistant C (CR), pH and elemental nutrients in the forest floor and soil (0–5, 5–10 cm depths) before and after burning (1, 3, 6, 12 months) in a mature longleaf pine plantation at the Harrison Experimental Forest, near Saucier, Mississippi. Prescribed fire consumed much of the forest floor (11.3 Mg ha−1; −69%), increased soil pH and caused a pulse of C, N and elemental nutrients to flow to the near surface soils. In the initial one to three months post-burn coinciding with the start of the growing season, retention of nutrients by soil peaked. Most of the N (93%), Ca (88%), K (96%) and Mg (101%), roughly half of the P (48%) and Mn (52%) and 25% of the C lost from the forest floor were detected in the soil and apparently not lost to volatilization. By month 12, soil C and N pools were not different at depths of 0–5 cm but declined significantly below pre-burn levels at depths of 5–10 cm, C −36% (p < 0.0001), N −26% (p = 0.003), contrary to other examples in southern pine ecosystems. In the upper 5 cm of soil, only Cu (−49%) remained significantly lower than pre-burn contents by month 12, at depths of 5–10 cm, Cu (−76%), Fe (−22%), K (−51%), Mg (−57%), Mn (−82%) and P (−52%) remain lower at month 12 than pre-burn contents. Burning did not increase soil CR content, conversely significant declines in CR occurred. It appears that recovery of soil C and N pools post-burn will require more time on this site than other southern pine forests.


2002 ◽  
Vol 32 (6) ◽  
pp. 928-941 ◽  
Author(s):  
Joseph J Hendricks ◽  
Carlos A Wilson ◽  
Lindsay R Boring

Foliar litter position and decomposition were assessed in longleaf pine (Pinus palustris Mill.) - wiregrass (Aristida beyrichiana Trin. & Rupr.) woodlands during a 3-year burn interval. Position assessments revealed 57.7 and 67.4% of foliar litter was elevated in wiregrass crowns 1 and 2 years, respectively, following burning. Decomposition assessments revealed soil-surface mass loss decay constants (range 0.097–0.282) similar to those measured in comparable pine forests. However, elevated longleaf pine and wiregrass litter exhibited decay constants (0.052 and 0.074, respectively) 50% lower than corresponding soil-surface rates and among the lowest values in the literature. With the exception of wiregrass, which did not exhibit an immobilization of the nutrients (N, P, Ca, K, and Mg) assessed, foliar litter exhibited either extensive P immobilization with minimal N immobilization or minimal, short-lived immobilization of N, P, or both N and P. The percentage of original N and P remaining after 3 years varied widely among the soil surface (N range 6.3–56.3%; P range 3.4–204.7%) and elevated (N range 76.8–94.9%; P range 52.0–99.2%) litter. These results suggest that fire regimes typically employed in longleaf pine – wiregrass woodlands may balance N losses via volatilization with P limitations via litter immobilization.


2017 ◽  
Vol 26 (10) ◽  
pp. 852 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker

Early-seral forests are expanding throughout western North America as fire frequency and annual area burned increase, yet fire behaviour in young postfire forests is poorly understood. We simulated fire behaviour in 24-year-old lodgepole pine (Pinus contorta var. latifolia) stands in Yellowstone National Park, Wyoming, United States using operational models parameterised with empirical fuel characteristics, 50–99% fuel moisture conditions, and 1–60kmhr−1 open winds to address two questions: [1] How does fireline intensity, and crown fire initiation and spread vary among young, lodgepole pine stands? [2] What are the contributions of fuels, moisture and wind on fire behaviour? Sensitivity analysis indicated the greatest contributors to output variance were stand structure mediated wind attenuation, shrub fuel loads and 1000-h fuel moisture for fireline intensity; crown base height for crown fire initiation; and crown bulk density and 1-h fuel moisture for crown fire spread. Simulation results predicted crown fire (e.g. passive, conditional or active types) in over 90% of stands at 50th percentile moisture conditions and wind speeds greater than 3kmhr−1. We conclude that dense canopy characteristics heighten crown fire potential in young, postfire lodgepole pine forests even under less than extreme wind and fuel moisture conditions.


Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 34 ◽  
Author(s):  
Kevin Moriarty ◽  
Antony S. Cheng ◽  
Chad M. Hoffman ◽  
Stuart P. Cottrell ◽  
Martin E. Alexander

The recent mountain pine beetle outbreak affecting lodgepole pine forests in the Rocky Mountains has created a novel fire environment for wildland firefighters. This paper presents results from an examination of firefighters’ observations of fire behavior in post-outbreak lodgepole pine forests, with a focus on what they considered surprising from a fire behavior standpoint and how this in turn affected their suppression tactics. The surprises in fire behavior experienced by firefighters during the red phase of post-outbreak forests included an elevated level of fire spread and intensity under moderate weather and fuel moisture conditions, increased spotting, and faster surface-to-crown fire transitions with limited or no ladder fuels. Unexpectedly, during the gray phase in mountain pine beetle-attacked stands, crown ignition and crown fire propagation was observed for short periods of time. Firefighters are now more likely to expect to see active fire behavior in nearly all fire weather and fuel moisture conditions, not just under critically dry and windy situations, and across all mountain pine beetle attack phases, not just the red phase. Firefighters changed their suppression tactics by adopting indirect methods due to the potential fire behavior and tree-fall hazards associated with mountain pine beetle-attacked lodgepole pine forests.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 367 ◽  
Author(s):  
Kevin M. Robertson ◽  
William J. Platt ◽  
Charles E. Faires

Research Highlights: Spatial patterns of fire spread and severity influence survival of juvenile pines in longleaf pine savannas. Small areas that do not burn during frequent fires facilitate formation of patches of even-aged longleaf pine juveniles. These regeneration patches are especially associated with inner portions of openings (gaps) and where canopy trees have died in recent decades. Patterns of prescribed fire can thus have an important influence on stand dynamics of the dominant tree in pine savannas. Background and Objectives: Savannas are characterized by bottlenecks to tree regeneration. In pine savannas, longleaf pine is noted for recruitment in discrete clusters located within gaps away from canopy trees. Various mechanisms promoting this pattern have been hypothesized: light limitations, soil moisture, soil nutrients, pine needle mulching, competition with canopy tree roots, and fire severity associated with pine needle litter. We tested the hypothesis that regeneration patches are associated with areas that remain unburned during some prescribed fires, as mediated by gaps in the canopy, especially inner portions of gaps, and areas re-opened by death of canopy trees. Materials and Methods: We mapped areas that were unburned during prescribed fires applied at 1–2 year intervals from 2005–2018 in an old-growth pine savanna in Georgia, USA. We compared the maps to locations of longleaf pine juveniles (<1.5 m height) measured in 2018 and canopy cover and canopy tree deaths using a long-term (40 year) tree census. Results: Logistic regression analysis showed juveniles to be associated with unburned areas, gaps, inner gaps, and areas where canopy trees died. Conclusions: Patterns of fire spread and severity limit survival of longleaf pine juveniles to patches away from canopy trees, especially where canopy trees have died in recent decades. These processes contribute to a buffering mechanism that maintains the savanna structure and prevents transition to closed canopy forest or open grassland communities.


2007 ◽  
Vol 37 (8) ◽  
pp. 1349-1358 ◽  
Author(s):  
J. Morgan Varner ◽  
J. Kevin Hiers ◽  
Roger D. Ottmar ◽  
Doria R. Gordon ◽  
Francis E. Putz ◽  
...  

In forests historically maintained by frequent fire, reintroducing fire after decades of exclusion often causes widespread overstory mortality. To better understand this phenomenon, we subjected 16 fire-excluded (ca. 40 years since fire) 10 ha longleaf pine ( Pinus palustris Mill.) stands to one of four replicated burning treatments based on volumetric duff moisture content (VDMC): wet (115% VDMC); moist (85% VDMC); dry (55% VDMC); and a no-burn control. During the first 2 years postfire, overstory pines in the dry burns suffered the greatest mortality (mean 20.5%); pine mortality in the wet and moist treatments did not differ from the control treatment. Duff reduction was greatest in the dry burns (mean 46.5%), with minimal reduction in the moist and wet burns (14.5% and 5%, respectively). Nested logistic regression using trees from all treatments revealed that the best predictors of individual pine mortality were duff consumption and crown scorch (P < 0.001; R2 = 0.34). Crown scorch was significant only in dry burns, whereas duff consumption was significant across all treatments. Duff consumption was related to moisture content in lower duff (Oa; R2 = 0.78, P < 0.001). Restoring fire to long-unburned forests will require development of burn prescriptions that include the effects of duff consumption, an often overlooked fire effect.


2013 ◽  
Vol 43 (5) ◽  
pp. 512-516 ◽  
Author(s):  
Jesse K. Kreye ◽  
J. Morgan Varner ◽  
Christopher J. Dugaw ◽  
Jing Cao ◽  
Jonathan Szecsei ◽  
...  

The ignition and combustion of forest floor duff are poorly understood yet have been linked to soil heating and overstory tree mortality in many temperate coniferous forests. Research to date has focused on the characteristics of duff that facilitate ignition and spread, including fuel moisture, mineral content, and depth. Field observations suggest that the presence of pine cones on and within the forest floor might facilitate ignition of intermixed forest floor fuels. We investigated the effect of cone fuel additions on the ignition of underlying forest floor from fuels collected in long-unburned longleaf pine (Pinus palustris Mill.) forests in northern Florida, USA. Fuels were wetted to threshold gravimetric moisture contents to evaluate the relative effect on ignition. In stark contrast to fuel beds without cones, in which duff ignition only occurred in 17% of samples, those with cones added ignited the underlying duff 94% of the time. Flame heights were 40% taller and flaming duration was 47% longer in fuel beds with cones. Where present, pine cones act as vectors of ignition for forest floor fuels, and their role in fires deserves more attention to enhance our understanding of forest floor combustion.


2014 ◽  
Vol 44 (5) ◽  
pp. 476-486 ◽  
Author(s):  
Lisa J. Samuelson ◽  
Tom A. Stokes ◽  
John R. Butnor ◽  
Kurt H. Johnsen ◽  
Carlos A. Gonzalez-Benecke ◽  
...  

Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for above- and below-ground biomass and quantify ecosystem C stocks in five longleaf pine forests ranging in age from 5 to 87 years and in basal area from 0.4 to 22.6 m2·ha−1. Live aboveground C (woody plant + ground cover) and live root C (longleaf pine below stump + plot level coarse roots + plot level fine roots) ranged from 1.4 and 2.9 Mg C·ha−1, respectively, in the 5-year-old stand to 78.4 and 19.2 Mg C·ha−1, respectively, in the 87-year-old stand. Total ecosystem C (live plant + dead organic matter + mineral soil) values were 71.6, 110.1, 124.6, 141.4, and 185.4 Mg C·ha−1 in the 5-, 12-, 21-, 64-, and 87-year-old stands, respectively, and dominated by tree C and soil C. In the 5-year-old stand, ground cover C and residual taproot C were significant C stocks. This unique, in-depth assessment of above- and below-ground C across a series of longleaf pine stands will improve estimates of C in longleaf pine ecosystems and contribute to development of general biomass models that account for variation in climate, site, and management history in an important but understudied ecosystem.


2008 ◽  
Vol 38 (9) ◽  
pp. 2394-2404 ◽  
Author(s):  
Ralph M. Nelson ◽  
J. Kevin Hiers

Fire managers often model pine needles as 1 h timelag fuels, but fuelbed properties may significantly change the rate at which needles exchange moisture with the atmosphere. The problem of determining whether moisture loss from fine fuels is being controlled by individual particles or by the fuelbed remains unresolved. Results from this laboratory experiment indicate that first-period timelags of longleaf pine ( Pinus palustris Mill.) needles are altered by fuelbed loading and needle arrangement. Timelags of individual needles ranged from 3.3 to 5.3 h; timelags of beds of vertically oriented needles (4.4 to 8.6 h) approximated those of individual particles, but were slightly influenced by loading. Beds of horizontal needles dried with load-dependent timelags that varied from 6.5 to 31.6 h. Fuel loads ranged from 0.04 (for individual particles) to 1.07 kg·m–2. We report a new metric, the area drying rate, which is analogous to a unit-area burning rate. For beds of flat needles, plots of the area drying rate versus fuel load illustrate a transition from control by individual particles to control by the bed structure when fuel loading is approximately 0.33 kg·m–2. Beds of vertical needles were particle controlled. Results should be useful to fire managers when modeling fire behavior.


Sign in / Sign up

Export Citation Format

Share Document