Assessment of risks to non-target species from an encapsulated toxin in a bait proposed for control of feral cats

2011 ◽  
Vol 38 (1) ◽  
pp. 39 ◽  
Author(s):  
Paul J. de Tores ◽  
Duncan R. Sutherland ◽  
Judy R. Clarke ◽  
Robert F. Hill ◽  
Sean W. Garretson ◽  
...  

Context The CURIOSITY® bait is the name coined for a variation of the existing sausage-style cat bait, ERADICAT®. The latter is used under experimental permit in Western Australia for research associated with cat control. The CURIOSITY bait differs from ERADICAT by providing a pH-buffered (less acidic) medium and has been proposed to reduce the risk to non-target species by encapsulating a toxin in a pellet. We trialled a prototype pellet proposed for encapsulation of 1080 and/or alternative toxins, with delivery proposed through the CURIOSITY bait. Aim Our aim was to determine whether the pellet was consumed by non-target native species from south-west of Western Australia. Methods Trials involved use of a non-toxic biomarker, Rhodamine B, encapsulated within the pellet and inserted into the CURIOSITY® bait. Uptake of the encapsulated biomarker was assessed in captive trials for the target species, the feral cat (Felis catus) and two non-target species of varanid lizard, Rosenberg’s goanna (Varanus rosenbergi) and Gould’s goanna (V. gouldii) and the non-target mammal species chuditch (Dasyurus geoffroii) and southern brown bandicoot (Isoodon obesulus). Uptake of the encapsulated biomarker was also assessed in field trials for a range of native species. Key results Captive trials demonstrated feral cats will consume the CURIOSITY bait and pellet. However, results from captive and field trials indicated several non-target species also consumed the bait and pellet. We also found the pellet itself was not sufficiently robust for use in a bait. As with previously reported studies, we found Rhodamine B to be an effective biomarker for use in cats. We also developed a technique whereby Rhodamine B can be used as a biomarker in reptiles. However, its use as a biomarker in other mammalian species was confounded by what appeared to be background, or pre-existing, levels of fluorescence, or banding, in their whiskers. Conclusion The prototype pellet is unsuitable in its current form for use with the CURIOSITY bait. We caution that the CURIOSITY bait has non-target issues in south-west of Western Australia and any proposed variations to this bait, or the ERADICAT® bait, need to be rigorously assessed for their potential risk to non-target species and assessed for the level of uptake by cats, irrespective of their suitability/unsuitability as a medium for delivery of an encapsulated toxin. We believe the threat to biodiversity-conservation values from unmitigated feral-cat predation of native fauna poses a significant and real threat and we recommend urgent investment of resources to address the issue of cat predation in a coordinated and collaborative manner within Australia and New Zealand.

2018 ◽  
Vol 45 (6) ◽  
pp. 518 ◽  
Author(s):  
Jaime Heiniger ◽  
Skye F. Cameron ◽  
Graeme Gillespie

Context Feral cats are a significant threat to native wildlife and broad-scale control is required to reduce their impacts. Two toxic baits developed for feral cats, Curiosity® and Hisstory®, have been designed to reduce the risk of baiting to certain non-target species. These baits involve encapsulating the toxin within a hard-shelled delivery vehicle (HSDV) and placing it within a meat attractant. Native animals that chew their food more thoroughly are predicted to avoid poisoning by eating around the HSDV. This prediction has not been tested on wild native mammals in the monsoonal wet–dry tropics of the Northern Territory. Aim The aim of this research was to determine whether northern quolls (Dasyurus hallucatus) and northern brown bandicoots (Isoodon macrourus) would take feral cat baits and ingest the HSDV under natural conditions on Groote Eylandt. Methods We hand-deployed 120 non-toxic baits with a HSDV that contained a biomarker, Rhodamine B, which stains animal whiskers when ingested. The species responsible for bait removal was determined with camera traps, and HSDV ingestion was measured by evaluating Rhodamine B in whiskers removed from animals trapped after baiting. Key results During field trials, 95% of baits were removed within 5 days. Using camera-trap images, we identified the species responsible for taking baits on 65 occasions. All 65 confirmed takes were by native species, with northern quolls taking 42 baits and northern brown bandicoots taking 17. No quolls and only one bandicoot ingested the HSDV. Conclusion The use of the HSDV reduces the potential for quolls and bandicoots to ingest a toxin when they consume feral cat baits. However, high bait uptake by non-target species may reduce the efficacy of cat baiting in some areas. Implications The present study highlighted that in the monsoonal wet–dry tropics, encapsulated baits are likely to minimise poisoning risk to certain native species that would otherwise eat meat baits. However, further research may be required to evaluate risks to other non-target species. Given the threat to biodiversity from feral cats, we see it as critical to continue testing Hisstory® and Curiosity® in live-baiting trials in northern Australia.


2016 ◽  
Vol 43 (1) ◽  
pp. 61 ◽  
Author(s):  
Clifford Bennison ◽  
J. Anthony Friend ◽  
Timothy Button ◽  
Harriet Mills ◽  
Cathy Lambert ◽  
...  

Context House mice (Mus domesticus) are present on Boullanger and Whitlock islands, Western Australia, and could potentially threaten populations of the dibbler (Parantechinus apicalis) and grey-bellied dunnart (Sminthopsis griseoventer) through competition for resources. A workshop in 2007 recommended a study to assess the feasibility of eradicating house mice from the islands by using poison baits and of the risk posed to non-target native species. Aim We aimed to assess the risk to non-target native species if poison baiting was used to eradicate house mice on Boullanger and Whitlock islands. Methods Non-toxic baits containing the bait marker rhodamine B were distributed on Boullanger Island and on the mouse free Escape Island to determine the potential for primary poisoning. Acceptance of baits by mammals was measured through sampling and analysis of whiskers, and by reptiles through observations of dye in faeces. To determine the potential for secondary exposure to poison, the response of dibblers to mouse carcasses was observed using motion-activated cameras. Bait acceptance was compared using two methods of delivery, namely, scattering in the open and delivery in polyvinyl chloride (PVC) tubes. A cafeteria experiment of bait consumption by dibblers was also undertaken using captive animals held at the Perth Zoo. Ten dibblers were offered non-toxic baits containing rhodamine B in addition to their normal meals; consumption of bait and the presence of dye in whiskers were measured. Key results Bait acceptance on the islands was high for house mice (92% of individuals) and dibblers (48%) and it was independent of bait-delivery technique. There was no evidence of bait acceptance by grey-bellied dunnarts. Dibblers may consume mice carcasses if available; however, no direct consumption of mice carcasses was observed with movement sensor cameras but one dibbler was observed removing a mouse carcass and taking it away. During the cafeteria experiment, 9 of 10 captive dibblers consumed baits. Conclusions This investigation demonstrated that dibblers consume baits readily and island populations would experience high mortality if exposed to poison baits. Poison baiting could effectively eradicate mice from Boullanger and Whitlock islands but not without mortality for dibblers. Implications Toxic baits could be used to eradicate mice from Boullanger and Whitlock islands, provided that non-target species such as dibblers were temporarily removed from the islands before the application of baits.


2020 ◽  
Vol 47 (8) ◽  
pp. 762
Author(s):  
S. Comer ◽  
L. Clausen ◽  
S. Cowen ◽  
J. Pinder ◽  
A. Thomas ◽  
...  

Abstract ContextFeral cat predation has had a significant impact on native Australian fauna in the past 200 years. In the early 2000s, population monitoring of the western ground parrot showed a dramatic decline from the pre-2000 range, with one of three meta-populations declining to very low levels and a second becoming locally extinct. We review 8 years of integrated introduced predator control, which trialled the incorporation of the feral cat bait Eradicat® into existing fox baiting programs. AimsTo test the efficacy of integrating feral cat control into an existing introduced predator control program in an adaptive management framework conducted in response to the decline of native species. The objective was to protect the remaining western ground parrot populations and other threatened fauna on the south coast of Western Australia. MethodsA landscape-scale feral cat and fox baiting program was delivered across south coast reserves that were occupied by western ground parrots in the early 2000s. Up to 500000ha of national parks and natures reserves were baited per annum. Monitoring was established to evaluate both the efficacy of landscape-scale baiting in management of feral cat populations, and the response of several native fauna species, including the western ground parrot, to an integrated introduced predator control program. Key resultsOn average, 28% of radio-collared feral cats died from Eradicat® baiting each year, over a 5-year period. The results varied from 0% to 62% between years. Changes in site occupancy by feral cats, as measured by detection on camera traps, was also variable, with significant declines detected after baiting in some years and sites. Trends in populations of native fauna, including the western ground parrot and chuditch, showed positive responses to integrated control of foxes and cats. ImplicationsLandscape-scale baiting of feral cats in ecosystems on the south coast of Western Australia had varying success when measured by direct knockdown of cats and site occupancy as determined by camera trapping; however, native species appeared to respond favourably to integrated predator control. For the protection of native species, we recommend ongoing baiting for both foxes and feral cats, complemented by post-bait trapping of feral cats. We advocate monitoring baiting efficacy in a well designed adaptive management framework to deliver long-term recovery of threatened species that have been impacted by cats.


2011 ◽  
Vol 38 (4) ◽  
pp. 350 ◽  
Author(s):  
K. E. Moseby ◽  
J. L. Read ◽  
B. Galbraith ◽  
N. Munro ◽  
J. Newport ◽  
...  

Context Poison baits are often used to control both foxes and feral cats but success varies considerably. Aims This study investigated the influence of bait type, placement and lures on bait uptake by the feral cat, red fox and non-target species to improve baiting success and reduce non-target uptake. Methods Six short field trials were implemented during autumn and winter over a five-year period in northern South Australia. Key results Results suggest that poison baiting with Eradicat or dried kangaroo meat baits was inefficient for feral cats due to both low rates of bait detection and poor ingestion rates for baits that were encountered. Cats consumed more baits on dunes than swales and uptake was higher under bushes than in open areas. The use of auditory or olfactory lures adjacent to baits did not increase ingestion rates. Foxes consumed more baits encountered than cats and exhibited no preference between Eradicat and kangaroo meat baits. Bait uptake by native non-target species averaged between 14 and 57% of baits during the six trials, accounting for up to 90% of total bait uptake. Corvid species were primarily responsible for non-target uptake. Threatened mammal species investigated and nibbled baits but rarely consumed them; however, corvids and some common rodent species ingested enough poison to potentially receive a lethal dose. Conclusions It is likely that several factors contributed to poor bait uptake by cats including the presence of alternative prey, a preference for live prey, an aversion to scavenging or eating unfamiliar foods and a stronger reliance on visual rather than olfactory cues for locating food. Implications Further trials for control of feral cats should concentrate on increasing ingestion rates without the requirement for hunger through either involuntary ingestion via grooming or development of a highly palatable bait.


2007 ◽  
Vol 34 (6) ◽  
pp. 467 ◽  
Author(s):  
Cheryl A. Hetherington ◽  
David Algar ◽  
Harriet Mills ◽  
Roberta Bencini

ERADICAT®, a sausage-type meat bait, has been developed for use in managing feral cat (Felis catus) populations throughout Western Australia. However, concern about potential exposure of non-target species to bait-delivered toxicants has led to the development of a technique to more specifically target feral cats using a pellet. Research into the consumption, by cats and native animals, of toxic pellets implanted within the ERADICAT® bait has been simulated using ball bearings as a substitute pellet. Results from our work indicate that encapsulating the toxicant may pose less risk of poisoning to chuditch (Dasyurus geoffroii), woylies (Bettongia pencillata) and southern brown bandicoots (Isoodon obesulus) as they consumed significantly fewer ball bearings (P = 0.003, <0.001, <0.001) than semi-feral cats (P = 0.07). Theoretically, a toxic pellet will not reduce the effectiveness of the ERADICAT® bait as there was no significant difference between consumption of baits and the consumption of ball bearings in feral cats (P = 0.07). Therefore, baits containing a toxic pellet have the potential to be a more selective method to control feral cats.


2020 ◽  
Vol 47 (8) ◽  
pp. 547
Author(s):  
Rosemary Hohnen ◽  
Brett P. Murphy ◽  
Sarah M. Legge ◽  
Chris R. Dickman ◽  
John C. Z. Woinarski

Abstract ContextPredation by feral cats (Felis catus) threatens a range of vertebrate species across Australia, and cat-free islands increasingly act as safe havens for biodiversity. A feral cat eradication program has begun on Kangaroo Island (4405km2) in South Australia, and poison baiting is likely to be one of the main methods used. Aims Here, we trial a non-toxic version of a cat bait, ‘Eradicat’, on western Kangaroo Island, to examine its potential impact on non-target species. MethodsNon-toxic baits containing the biomarker Rhodamine B were deployed across four sites in early August and late November in 2018, with bait take and consumption assessed both by remote cameras and by the presence of Rhodamine B in mammalian whisker samples taken post-baiting. Key resultsCats encountered baits on very few occasions and took a bait on only one occasion in August (&lt;1% of 576 baits deployed). Non-target species accounted for over 99% of identifiable bait takes. In both seasons, &gt;60% of all baits laid was taken by either the common brushtail possum (Trichosurus vulpecula), bush rat (Rattus fuscipes) or Australian raven (Corvus coronoides). In November, Rosenberg’s goanna (Varanus rosenbergi) and southern brown bandicoot (south-eastern subspecies; Isoodon obesulus obesulus), listed nationally as Endangered, also took baits (3% and 1% respectively). The Kangaroo Island dunnart (Sminthopsis fuliginosus aitkeni), listed nationally as endangered, approached a bait on only one occasion, but did not consume it. Evidence of bait consumption was visible in the whiskers of captured common brushtail possums (100% of post-baiting captured individuals in August, 80% in November), bush rats (59% in August and 50% in November), house mice (Mus musculus) (45% in November) and western pygmy-possums (Cercartetus concinnus) (33% in November). ConclusionsAlthough feral cat baiting has the potential to significantly benefit wildlife on Kangaroo Island, impacts on non-target species (particularly the bush rat and common brushtail possum) may be high. ImplicationsAlternative cat baits, such as those containing a toxin to which native species have a higher tolerance or that are less readily consumed by native wildlife, will be more appropriate.


2020 ◽  
Vol 47 (8) ◽  
pp. 747
Author(s):  
J. Anthony Friend ◽  
Robert Hill ◽  
Brian Macmahon ◽  
Louisa Bell ◽  
Tim Button ◽  
...  

Abstract ContextFeral cats have benefitted from effective control of foxes in south-western Australia and, consequently, their impact on some threatened mammal species has increased. Control of feral cats in the region can be enhanced by use of the Eradicat® cat bait, but its impact on non-target animal populations requires investigation before widespread use. AimsThe aim of the present study was to determine through field trials whether consumption of Eradicat® baits by resident red-tailed phascogales, following a broadscale baiting operation to control feral cats, was sufficiently frequent to cause significant rates of mortality in wild populations of phascogales. MethodsNine radio-tagged red-tailed phascogales were monitored through an Eradicat® baiting event to determine their survival. Removal and consumption of toxic and non-toxic rhodamine B-labelled baits by a range of species were monitored with camera traps and by subsequent trapping of red-tailed phascogales and other mammals to sample whiskers for evidence of rhodamine uptake. Key resultsAlthough some phascogales showed interest in baits and sometimes moved them from the deposition site, all radio-tagged phascogales survived for at least 1 week after baiting, by which time very few or no baits remained. Examination of whiskers sampled from individuals exposed to rhodamine-labelled baits showed that consumption of non-toxic Eradicat® baits by phascogales was negligible; only one phascogale of 62 sampled showed any rhodamine banding. ConclusionsThe present study provided no evidence that red-tailed phascogales in the study region are at risk from an Eradicat® baiting episode in autumn. ImplicationsThe risk to red-tailed phascogale populations through the use of Eradicat® baiting to control cats in their habitat in the Great Southern region of Western Australia is likely to be low. Further research to elucidate any impact of repeated baiting on populations of this species at several locations is recommended.


2020 ◽  
Author(s):  
Sarara Azumi ◽  
Yuya Watari ◽  
Nariko Oka ◽  
Tadashi Miyashita

Abstract Understanding how invasive predators impact native species is essential for the development of effective control strategies, especially in insular environments where alternative non-native prey species exist. We examined seasonal and spatial shifts in diet of feral cat Felis silvestris catus focusing on the predation on native streaked shearwaters, Calonectris leucomelas, and introduced rats, Rattus rattus and R. norvegicus, which are alternative prey to shearwaters, on Mikura Island, Japan. Streaked shearwaters breed at low elevations on the island from spring to autumn, whereas rats inhabit the island throughout the year, which makes them an alternative prey when native shearwaters are absent. Fecal analysis revealed that feral cats dramatically shifted their diets from introduced rats in winter to streaked shearwaters in seabird-season in low elevation areas of the island, while cats preyed on rats throughout the year at high altitudes on the island. This finding suggests that feral cats selectively prey on shearwaters. This is probably because of their large body size and less cautious behavior, and because introduced rats sustain the cat population when shearwaters are absent. The number of streaked shearwaters killed was estimated to be 313 individuals per cat per year, which represents an indication of top-down effects of feral cats on streaked shearwaters. Further studies on the demographic parameters and interspecific interactions of the three species are required to enable effective cat management for the conservation of streaked shearwaters on this island.


2019 ◽  
Vol 46 (5) ◽  
pp. 378 ◽  
Author(s):  
Patrick L. Taggart ◽  
Bronwyn A. Fancourt ◽  
Andrew J. Bengsen ◽  
David E. Peacock ◽  
Patrick Hodgens ◽  
...  

Context Feral cats (Felis catus) impact the health and welfare of wildlife, livestock and humans worldwide. They are particularly damaging where they have been introduced into island countries such as Australia and New Zealand, where native prey species evolved without feline predators. Kangaroo Island, in South Australia, is Australia’s third largest island and supports several threatened and endemic species. Cat densities on Kangaroo Island are thought to be greater than those on the adjacent South Australian mainland, based on one cat density estimate on the island that is higher than most estimates from the mainland. The prevalence of cat-borne disease in cats and sheep is also higher on Kangaroo Island than the mainland, suggesting higher cat densities. A recent continental-scale spatial model of cat density predicted that cat density on Kangaroo Island should be about double that of the adjacent mainland. However, although cats are believed to have severe impacts on some native species on the island, other species that are generally considered vulnerable to cat predation have relatively secure populations on the island compared with the mainland. Aims The present study aimed to compare feral cat abundance between Kangaroo Island and the adjacent South Australian mainland using simultaneous standardised methods. Based on previous findings, we predicted that the relative abundance of feral cats on Kangaroo Island would be approximately double that on the South Australian mainland. Methods Standardised camera trap surveys were used to simultaneously estimate the relative abundance of feral cats on Kangaroo Island and the adjacent South Australian mainland. Survey data were analysed using the Royle–Nichols abundance-induced heterogeneity model to estimate feral cat relative abundance at each site. Key results Cat abundance on the island was estimated to be over 10 times greater than that on the adjacent mainland. Conclusions Consistent with predictions, cat abundance on the island was greater than on the adjacent mainland. However, the magnitude of this difference was much greater than expected. Implications The findings show that the actual densities of cats at local sites can vary substantially from predictions generated by continental-scale models. The study also demonstrates the value of estimating abundance or density simultaneously across sites using standardised methods.


2007 ◽  
Vol 34 (2) ◽  
pp. 125 ◽  
Author(s):  
Laurie E. Twigg ◽  
Tim Lowe ◽  
Gary Martin

The consumption of five non-toxic, grain-based baits, and the effectiveness of the preferred baits when treated with 1080 in reducing pig numbers, were determined for feral pigs (Sus scrofa) in several areas in the Mediterranean agricultural region of Western Australia. Fermented wheat with added blood and bone proved an effective attractant for feral pigs, and for determining areas of pig activity. Wheat and malted barley were the preferred baits, there was a variable response to lupins, and commercial pig pellets were consumed least. Malted barley, barley, and wheat treated with 1080 gave good reductions in pig numbers at the localised scale. Where pigs would eat lupins, 1080-treated lupins were usually effective in reducing pig abundance. In some instances, further evidence of feral pig activity was not seen on several sites for several months after poison-baiting occurred. The addition of a small amount of unpoisoned grain to mask the presence of 1080 did not increase the take of treated bait (P < 0.05). Although finding poisoned pigs was difficult owing to the terrain and the presence of bush remnants, the poisoned pigs found (n = 90) were often within 200 m of active bait stations. 1080-poisoned pigs included both adult (≥25 kg) and non-adult pigs of both sexes. Body mass of these pigs ranged from 4 to 90 kg. In all, 42% of poisoned adults found (n = 50) were 50 kg or more. There was minimal evidence of bait take by non-target species, and, where this occurred, it generally involved the consumption of the fermented wheat attractant by kangaroos (Macropus spp.) and foxes (Vulpes vulpes). Six foxes were known to have been poisoned with 1080-treated grain (4 with malted barley, 2 with wheat). Excluding foxes, no other non-target animals, including native species, were found dead during the intensive searches for poisoned pigs.


Sign in / Sign up

Export Citation Format

Share Document