Quantifying imperfect camera-trap detection probabilities: implications for density modelling

2020 ◽  
Vol 47 (2) ◽  
pp. 177 ◽  
Author(s):  
T. McIntyre ◽  
T. L. Majelantle ◽  
D. J. Slip ◽  
R. G. Harcourt

Abstract ContextData obtained from camera traps are increasingly used to inform various population-level models. Although acknowledged, imperfect detection probabilities within camera-trap detection zones are rarely taken into account when modelling animal densities. AimsWe aimed to identify parameters influencing camera-trap detection probabilities, and quantify their relative impacts, as well as explore the downstream implications of imperfect detection probabilities on population-density modelling. MethodsWe modelled the relationships between the detection probabilities of a standard camera-trap model (n=35) on a remotely operated animal-shaped soft toy and a series of parameters likely to influence it. These included the distance of animals from camera traps, animal speed, camera-trap deployment height, ambient temperature (as a proxy for background surface temperatures) and animal surface temperature. We then used this detection-probability model to quantify the likely influence of imperfect detection rates on subsequent population-level models, being, in this case, estimates from random encounter density models on a known density simulation. Key resultsDetection probabilities mostly varied predictably in relation to measured parameters, and decreased with an increasing distance from the camera traps and speeds of movement, as well as heights of camera-trap deployments. Increased differences between ambient temperature and animal surface temperature were associated with increased detection probabilities. Importantly, our results showed substantial inter-camera (of the same model) variability in detection probabilities. Resulting model outputs suggested consistent and systematic underestimation of true population densities when not taking imperfect detection probabilities into account. ConclusionsImperfect, and individually variable, detection probabilities inside the detection zones of camera traps can compromise resulting population-density estimates. ImplicationsWe propose a simple calibration approach for individual camera traps before field deployment and encourage researchers to actively estimate individual camera-trap detection performance for inclusion in subsequent modelling approaches.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247536
Author(s):  
Bart J. Harmsen ◽  
Nicola Saville ◽  
Rebecca J. Foster

Population assessments of wide-ranging, cryptic, terrestrial mammals rely on camera trap surveys. While camera trapping is a powerful method of detecting presence, it is difficult distinguishing rarity from low detection rate. The margay (Leopardus wiedii) is an example of a species considered rare based on its low detection rates across its range. Although margays have a wide distribution, detection rates with camera traps are universally low; consequently, the species is listed as Near Threatened. Our 12-year camera trap study of margays in protected broadleaf forest in Belize suggests that while margays have low detection rate, they do not seem to be rare, rather that they are difficult to detect with camera traps. We detected a maximum of 187 individuals, all with few or no recaptures over the years (mean = 2.0 captures/individual ± SD 2.1), with two-thirds of individuals detected only once. The few individuals that were recaptured across years exhibited long tenures up to 9 years and were at least 10 years old at their final detection. We detected multiple individuals of both sexes at the same locations during the same survey, suggesting overlapping ranges with non-exclusive territories, providing further evidence of a high-density population. By studying the sparse annual datasets across multiple years, we found evidence of an abundant margay population in the forest of the Cockscomb Basin, which might have been deemed low density and rare, if studied in the short term. We encourage more long-term camera trap studies to assess population status of semi-arboreal carnivore species that have hitherto been considered rare based on low detection rates.



2019 ◽  
Author(s):  
Sadoune Ait Kaci Azzou ◽  
Liam Singer ◽  
Thierry Aebischer ◽  
Madleina Caduff ◽  
Beat Wolf ◽  
...  

SummaryCamera traps and acoustic recording devices are essential tools to quantify the distribution, abundance and behavior of mobile species. Varying detection probabilities among device locations must be accounted for when analyzing such data, which is generally done using occupancy models. We introduce a Bayesian Time-dependent Observation Model for Camera Trap data (Tomcat), suited to estimate relative event densities in space and time. Tomcat allows to learn about the environmental requirements and daily activity patterns of species while accounting for imperfect detection. It further implements a sparse model that deals well will a large number of potentially highly correlated environmental variables. By integrating both spatial and temporal information, we extend the notation of overlap coefficient between species to time and space to study niche partitioning. We illustrate the power of Tomcat through an application to camera trap data of eight sympatrically occurring duiker Cephalophinae species in the savanna - rainforest ecotone in the Central African Republic and show that most species pairs show little overlap. Exceptions are those for which one species is very rare, likely as a result of direct competition.



2020 ◽  
Vol 47 (4) ◽  
pp. 338
Author(s):  
Bracy W. Heinlein ◽  
Rachael E. Urbanek ◽  
Colleen Olfenbuttel ◽  
Casey G. Dukes

Abstract ContextCamera traps paired with baits and scented lures can be used to monitor mesocarnivore populations, but not all attractants are equally effective. Several studies have investigated the efficacy of different attractants on the success of luring mesocarnivores to camera traps; fewer studies have examined the effect of human scent at camera traps. AimsWe sought to determine the effects of human scent, four attractants and the interaction between attractants and human scent in luring mesocarnivores to camera traps. Methods We compared the success of synthetic fermented egg (SFE), fatty acid scent (FAS) tablets, castor oil, and sardines against a control of no attractant in luring mesocarnivores to camera traps. We deployed each attractant and the control with either no regard to masking human scent or attempting to restrict human scent for a total of 10 treatments, and replicated treatments eight to nine times in two different phases. We investigated whether: (1) any attractants increased the probability of capturing a mesocarnivore at a camera trap; (2) not masking human scent affected the probability of capturing a mesocarnivore at a camera trap; and (3) any attractants increased the probability of repeat detections at a given camera trap. We also analysed the behaviour (i.e. speed and distance to attractant) of each mesocarnivore in relation to the attractants. Key resultsSardines improved capture success compared with the control treatments, whereas SFE, castor oil, and FAS tablets had no effect when all mesocarnivores were included in the analyses. Masking human scent did not affect detection rates in the multispecies analyses. Individually, the detection of some species depended on the interactions between masking (or not masking) human scent and some attractants. ConclusionsSardines were the most effective as a broad-based attractant for mesocarnivores. Mesocarnivores approached traps baited with sardines at slower rates, which allows for a higher success of capturing an image of the animal. ImplicationsHuman scent may not need to be masked when deploying camera traps for multispecies mesocarnivore studies, but researchers should be aware that individual species respond differently to attractants and may have higher capture success with species-specific attractants.



2020 ◽  
Vol 47 (2) ◽  
pp. 158 ◽  
Author(s):  
Remington J. Moll ◽  
Waldemar Ortiz-Calo ◽  
Jonathon D. Cepek ◽  
Patrick D. Lorch ◽  
Patricia M. Dennis ◽  
...  

Abstract ContextCamera traps are one of the most popular tools used to study wildlife worldwide. Numerous recent studies have evaluated the efficiency and effectiveness of camera traps as a research tool. Nonetheless, important aspects of camera-trap methodology remain in need of critical investigation. One such issue relates to camera-trap viewshed visibility, which is often compromised in the field by physical obstructions (e.g. trees) or topography (e.g. steep slopes). The loss of visibility due to these obstructions could affect wildlife detection rates, with associated implications for study inference and management application. AimsWe aimed to determine the effect of camera-trap viewshed obstruction on wildlife detection rates for a suite of eight North American species that vary in terms of ecology, commonness and body size. MethodsWe deployed camera traps at 204 sites throughout an extensive semi-urban park system in Cleveland, Ohio, USA, from June to September 2016. At each site, we quantified camera-trap viewshed obstruction by using a cover-board design. We then modelled the effects of obstruction on wildlife detection rates for the eight focal species. Key resultsWe found that detection rates significantly decreased with an increasing viewshed obstruction for five of the eight species, including both larger and smaller mammal species (white-tailed deer, Odocoileus virginianus, and squirrels, Sciurus sp., respectively). The number of detections per week per camera decreased two- to three-fold as visibility at a camera site decreased from completely free of obstruction to mostly obstructed. ConclusionsThese results imply that wildlife detection rates are influenced by site-level viewshed obstruction for a variety of species, and sometimes considerably so. ImplicationsResearchers using camera traps should address the potential for this effect to ensure robust inference from wildlife image data. Accounting for viewshed obstruction is critical when interpreting detection rates as indices of abundance or habitat use because variation in detection rate could be an artefact of site-level viewshed obstruction rather than due to underlying ecological processes.



2014 ◽  
Vol 36 (1) ◽  
pp. 60 ◽  
Author(s):  
Brendan D. Taylor ◽  
Ross L. Goldingay ◽  
John M. Lindsay

Camera traps can detect rare and cryptic species, and may enable description of the stability of populations of threatened species. We investigated the relative performance of cameras oriented horizontally or vertically, and recording mode (still and video) to detect the vulnerable long-nosed potoroo (Potorous tridactylus) as a precursor to population monitoring. We established camera traps for periods of 13–21 days across 21 sites in Richmond Range National Park in north-east New South Wales. Each camera trap set consisted of three KeepGuard KG680V cameras directed at a bait container – one horizontal and one vertical camera in still mode and one horizontal camera in video mode. Potoroos and bandicoots (Perameles nasuta and Isoodon macrourus) were detected at 14 sites and pademelons (Thylogale stigmatica and T. thetis) were detected at 19 sites. We used program Presence to compare detection probabilities for each camera category. The detection probability for all three taxa groups was lowest for the vertical still and similar for the horizontal cameras. The detection probability (horizontal still) was highest for the potoroos (0.43) compared with the bandicoots (0.16) and pademelons (0.25). We estimate that the horizontal stills camera could achieve a 95% probability of detection of a potoroo within 6 days compared with 8 days using a vertical stills camera. This suggests that horizontal cameras in still mode have great potential for monitoring the dynamics of this potoroo population.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nuno Guimaraes ◽  
Jozef Bučko ◽  
Marián Slamka

In last decades, golden jackals expanded significantly their distribution range, increasing their population density, being nowadays present in many countries in Europe. In Slovakia, their dispersion and population increase became more constant from 2009. Records of wolves, lynx and bear from camera traps are rather common across Slovakia, while those of golden jackals are still rare, despite a large number of active traps. In this work, we present records of a camera-trap, located on the east side of the Kysuce Protected Landscape Area, where, for the first time, we detect a sympatric occurrence of the golden jackal with all three native large carnivores.



2012 ◽  
Vol 34 (2) ◽  
pp. 196 ◽  
Author(s):  
Justine K. Smith ◽  
Graeme Coulson

Camera traps are increasingly used to monitor wildlife that is otherwise difficult to study. Traditionally, camera traps are set aimed horizontally towards a scent lure, capturing images of animals as they move past. A vertical camera orientation is also being used, whereby the camera lens and sensor face vertically down towards the scent lure, capturing images from above. We aimed to compare detection of southern brown bandicoots and long-nosed potoroos by camera traps set horizontally, to those set vertically. We also considered the number of false triggers and ease of species identification. Over 21 nights, we monitored 18 camera stations, each consisting of one PixController Inc. DigitalEye™ 7.2 camera aimed horizontally and one vertically, towards the same scent lure. We used PRESENCE (Version 3.0 (Beta)) to estimate detection probabilities for the two species, comparing a null model to a model with camera orientation as a covariate affecting probability of detection. Detection probabilities for both species was 2–5 times higher by vertical than by horizontal cameras, with no significant difference in false triggers. Vertical cameras also increased ease of species identification. Vertical camera orientation is shown to be superior in our study system, providing a valid alternative method.



Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matthew T. Hallett ◽  
Anthony Roberts ◽  
Ashley P. Holland ◽  
Angus Jackman

AbstractThe bush dog (Speothos venaticus) is rare, elusive, and difficult to study in the wild. Guyana contains a wealth of intact tropical forest (∼18.4 million ha) and savanna (1.6 million ha) habitats, but management of this species is hindered by a lack of data. We present two photographic records (consisting of nine individuals) of bush dogs from camera-traps set in the Kanuku Mountains Protected Area (KMPA) – the first of this species in Guyana. These records highlight the importance of Guiana Shield forests and Guyana’s expanding protected areas system to the conservation of these wide-ranging carnivores. Additionally, we recommend that detailed measurement and reporting of site variables become standard, as it will improve the efficacy of camera-trap studies of bush dogs and allow for broad-scale modelling of space use not otherwise possible due to the low detection rates at the scale of each individual study.



2020 ◽  
Vol 47 (6) ◽  
pp. 476 ◽  
Author(s):  
Dalton B. Neuharth ◽  
Wade A. Ryberg ◽  
Connor S. Adams ◽  
Toby J. Hibbitts ◽  
Danielle K. Walkup ◽  
...  

Abstract ContextAdvancements in camera-trap technology have provided wildlife researchers with a new technique to better understand their study species. This improved method may be especially useful for many conservation-reliant snake species that can be difficult to detect because of rarity and life histories with secretive behaviours. AimsHere, we report the results of a 6-month camera-trapping study using time lapse-triggered camera traps to detect snakes, in particular the federally listed Louisiana pinesnake (Pituophis ruthveni) in eastern Texas upland forests in the USA. MethodsSo as to evaluate the efficacy of this method of snake detection, we compared camera-trap data with traditional box-trapping data collected over the same time period across a similar habitat type, and with the same goal of detecting P. ruthveni. Key resultsNo differences in focal snake species richness were detected across the trap methods, although the snake-detection rate was nearly three times higher with camera traps than with the box traps. Detection rates of individual snake species varied with the trapping method for all but two species, but temporal trends in detection rates were similar across the trap methods for all but two species. Neither trap method detected P. ruthveni in the present study, but the species has been detected with both trap methods at other sites. ConclusionsThe higher snake-detection rate of the camera-trap method suggests that pairing this method with traditional box traps could increase the detection of P. ruthveni where it occurs. For future monitoring and research on P. ruthveni, and other similarly rare and secretive species of conservation concern, we believe these methods could be used interchangeably by saturating potentially occupied habitats with camera traps initially and then replacing cameras with box traps when the target species is detected. ImplicationsThere are financial and logistical limits to monitoring and researching rare and secretive species with box traps, and those limits are far less restrictive with camera traps. The ability to use camera-trap technologies interchangeably with box-trap methods to collect similar data more efficiently and effectively will have a significant impact on snake conservation.



2018 ◽  
Author(s):  
Jesse F Abrams ◽  
Lisa Hoerig ◽  
Robert Brozovic ◽  
Jan Axtner ◽  
Alex Crampton-Platt ◽  
...  

Invertebrate-derived DNA (iDNA), in combination with high throughput sequencing, has been proposed as a cost-efficient and powerful tool to survey vertebrate species. Previous studies, however, have only provided evidence that vertebrates can be detected using iDNA, but have not taken the next step of placing these detection events within a statistical framework that allows for robust biodiversity assessments. Here, we compare concurrent iDNA and camera-trap surveys. Leeches were repeatedly collected in close vicinity to 64 camera-trap stations in Sabah, Malaysian Borneo. We analyze iDNA-derived mammalian detection events in a modern occupancy model that accounts for imperfect detection and compare the results with those from occupancy models parameterized with camera-trap-derived detection events. We also combine leech-iDNA and camera-trap data in a single occupancy model. We found consistent estimates of occupancy probabilities produced by our camera-trap and leech datasets. This indicates that the metabarcoding of leech-iDNA method provides reasonable estimates of occupancy and can be a suitable method for studying and monitoring mammal species in tropical rainforests. However, we also show that a more extensive collection of leeches would be needed to assess mammal biodiversity with a similar robustness as with camera traps. As certain taxa were only detected in leeches, we see great potential in complementing camera-trap studies with the iDNA approach, as long as the collection of leeches follows a similar robust and standardized sampling scheme. Synthesis and applications: The approach we describe here is not restricted to the processing of leech samples, but can be used for the analysis of other iDNA and environmental DNA (eDNA) data. Our study is the first step to shift the application of e/iDNA studies from opportunistic ad-hoc collections to systematic surveys required for long-term wildlife populations and biodiversity monitoring programs.



Sign in / Sign up

Export Citation Format

Share Document