Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia

2020 ◽  
Vol 47 (8) ◽  
pp. 610 ◽  
Author(s):  
Leigh-Ann Woolley ◽  
Brett P. Murphy ◽  
Hayley M. Geyle ◽  
Sarah M. Legge ◽  
Russell A. Palmer ◽  
...  

Abstract ContextRecent global concern over invertebrate declines has drawn attention to the causes and consequences of this loss of biodiversity. Feral cats, Felis catus, pose a major threat to many vertebrate species in Australia, but their effect on invertebrates has not previously been assessed. AimsThe objectives of our study were to (1) assess the frequency of occurrence (FOO) of invertebrates in feral cat diets across Australia and the environmental and geographic factors associated with this variation, (2) estimate the number of invertebrates consumed by feral cats annually and the spatial variation of this consumption, and (3) interpret the conservation implications of these results. MethodsFrom 87 Australian cat-diet studies, we modelled the factors associated with variation in invertebrate FOO in feral cat-diet samples. We used these modelled relationships to predict the number of invertebrates consumed by feral cats in largely natural and highly modified environments. Key resultsIn largely natural environments, the mean invertebrate FOO in feral cat dietary samples was 39% (95% CI: 31–43.5%), with Orthoptera being the most frequently recorded order, at 30.3% (95% CI: 21.2–38.3%). The highest invertebrate FOO occurred in lower-rainfall areas with a lower mean annual temperature, and in areas of greater tree cover. Mean annual invertebrate consumption by feral cats in largely natural environments was estimated to be 769 million individuals (95% CI: 422–1763 million) and in modified environments (with mean FOO of 27.8%) 317 million invertebrates year−1, giving a total estimate of 1086 million invertebrates year−1 consumed by feral cats across the continent. ConclusionsThe number of invertebrates consumed by feral cats in Australia is greater than estimates for vertebrate taxa, although the biomass (and, hence, importance for cat diet) of invertebrates taken would be appreciably less. The impact of predation by cats on invertebrates is difficult to assess because of the lack of invertebrate population and distribution estimates, but cats may pose a threat to some large-bodied narrowly restricted invertebrate species. ImplicationsFurther empirical studies of local and continental invertebrate diversity, distribution and population trends are required to adequately contextualise the conservation threat posed by feral cats to invertebrates across Australia.

2018 ◽  
Vol 45 (3) ◽  
pp. 247 ◽  
Author(s):  
J. C. Z. Woinarski ◽  
B. P. Murphy ◽  
R. Palmer ◽  
S. M. Legge ◽  
C. R. Dickman ◽  
...  

Context Feral cats (Felis catus) are a threat to biodiversity globally, but their impacts upon continental reptile faunas have been poorly resolved. Aims To estimate the number of reptiles killed annually in Australia by cats and to list Australian reptile species known to be killed by cats. Methods We used (1) data from >80 Australian studies of cat diet (collectively >10 000 samples), and (2) estimates of the feral cat population size, to model and map the number of reptiles killed by feral cats. Key results Feral cats in Australia’s natural environments kill 466 million reptiles yr–1 (95% CI; 271–1006 million). The tally varies substantially among years, depending on changes in the cat population driven by rainfall in inland Australia. The number of reptiles killed by cats is highest in arid regions. On average, feral cats kill 61 reptiles km–2 year–1, and an individual feral cat kills 225 reptiles year–1. The take of reptiles per cat is higher than reported for other continents. Reptiles occur at a higher incidence in cat diet than in the diet of Australia’s other main introduced predator, the European red fox (Vulpes vulpes). Based on a smaller sample size, we estimate 130 million reptiles year–1 are killed by feral cats in highly modified landscapes, and 53 million reptiles year–1 by pet cats, summing to 649 million reptiles year–1 killed by all cats. Predation by cats is reported for 258 Australian reptile species (about one-quarter of described species), including 11 threatened species. Conclusions Cat predation exerts a considerable ongoing toll on Australian reptiles. However, it remains challenging to interpret the impact of this predation in terms of population viability or conservation concern for Australian reptiles, because population size is unknown for most Australian reptile species, mortality rates due to cats will vary across reptile species and because there is likely to be marked variation among reptile species in their capability to sustain any particular predation rate. Implications This study provides a well grounded estimate of the numbers of reptiles killed by cats, but intensive studies of individual reptile species are required to contextualise the conservation consequences of such predation.


1985 ◽  
Vol 12 (3) ◽  
pp. 425 ◽  
Author(s):  
NP Brothers ◽  
IJ Skira ◽  
GR Copson

246 feral cats were shot on Macquarie Island, Australia, between Dec. 1976 and Feb. 1981. The sex ratio ( males : females ) was 1:0.8. The percentages of animals with tabby, orange and black coats were 74, 26 and 2 resp. [sic]. Of the 64 orange cats, 56 were males . The breeding season was Oct.-Mar., with a peak in Nov.-Dec. The number of embryos in the 14 pregnant females averaged 4.7 (range = 1-9). The size of the 23 litters that were observed averaged 3 (range = 1-8). Kitten survival to 6 months of age was estimated to be <43%.


1997 ◽  
Vol 24 (1) ◽  
pp. 67 ◽  
Author(s):  
Rachel Paltridge ◽  
David Gibson ◽  
Glenn Edwards

Feral cats (Felis catus) occur throughout central Australia. In this study, we analysed the stomach contents of 390 feral cats collected between 1990 and 1994 from the southern half of the Northern Territory. Cats fed on a wide variety of invertebrates, reptiles, birds and mammals, including animals up to their own body mass in size. Mammals were the most important prey but reptiles were regularly eaten in summer and birds were important in winter. Invertebrates were present in the diet in all seasons. Carrion appeared in stomach samples during dry winters only and this has implications for future control of feral cats.


2018 ◽  
Author(s):  
Nicholas P. Askew ◽  
Flavie Vial ◽  
Graham C. Smith

AbstractThis study sought to determine whether a change in the abundance of feral cats (Felis catus) in three areas of England had occurred between the completion of a survey undertaken by the Ministry for Agriculture Fisheries and Food in 1986/7 and the turn of the century. In the event of a rabies outbreak occurring in Britain, feral cats would be one vector of the disease that would need to be controlled under the Rabies (control) Order 1974. A total of 741 “high risk sites”, found to provide appropriate conditions for feral cats, were surveyed between 1999 and 2000. The total number of feral cat colonies located within the survey areas was found to have fallen by 37% from 68 in 1986 to 43 in 1999/2000, translating to an estimated 212-247 fewer individual feral cats. Factories/trading estates and industrial premises continued to be the most common sites associated with urban feral cat colonies. However, the closing down of many traditional industries, such as mills and dockyards, and their replacement by more secure and insulated modern buildings, less amenable to feral cats finding warmth and food, had assisted the observed fall in numbers along with the effectiveness of neutering programs which are now taking place on many sites. Through this study information regarding feral cat colonies’ in urban landscapes as well colony size was gathered and fed into rabies contingency plans to help keep Britain rabies free into the future.


2021 ◽  
Vol 6 (2) ◽  
pp. 108-113
Author(s):  
Nurul Fadhilatunnisa ◽  
Sudarti Sudarti ◽  
Wachju Subchan

Inappropriate use of rodenticides by most market communities has resulted in a reduction in the population of feral cats (Felis catus) found in the market. If this continues, it can lead to the extinction of feral cat species in the area. This study aims to describe the level of knowledge and attitudes of the market community regarding the use of rodenticides and their impact on feral cats (Felis catus). This study used a survey method, namely interviews and observations of 28 respondents who claimed to have used rodenticides. The results showed that 35.7% of respondents had a low level of knowledge, 39.3% had a moderate level of knowledge, and 25% had a high level of knowledge. As for the attitude aspect, the majority of the community obtained quite good criteria with an average of 68.


2020 ◽  
Vol 47 (8) ◽  
pp. 698
Author(s):  
Georgia E. Garrard ◽  
Alexander M. Kusmanoff ◽  
Richard Faulkner ◽  
Chathuri L. Samarasekara ◽  
Ascelin Gordon ◽  
...  

Abstract Context. Feral cats (Felis catus) pose a significant threat to Australia’s native species and feral cat control is, therefore, an important component of threatened species management and policy. Australia’s Threatened Species Strategy articulates defined targets for feral cat control. Yet, currently, little is known about who is engaged in feral cat control in Australia, what motivates them, and at what rate they are removing feral cats from the environment. Aims. We aim to document who is engaging in feral cat control in Australia, how many cats they remove and to estimate the number of feral cats killed in a single year. Furthermore, we seek to better understand attitudes towards feral cat control in Australia. Methods. We used a mixed methods approach combining quantitative and qualitative techniques. Feral cat control data were obtained from existing data repositories and via surveys targeting relevant organisations and individuals. A bounded national estimate of the number of feral cats killed was produced by combining estimates obtained from data repositories and surveys with modelled predictions for key audience segments. Attitudes towards feral cat control were assessed by exploring qualitative responses to relevant survey questions. Key results. We received information on feral cat control from three central repositories, 134 organisations and 2618 individuals, together removing more than 35000 feral cats per year. When including projections to national populations of key groups, the estimated number of feral cats removed from the environment in the 2017–2018 financial year was 316030 (95% CI: 297742–334318). Conclusions. Individuals and organisations make a significant, and largely unrecorded, contribution to feral cat control. Among individuals, there is a strong awareness of the impact of feral cats on Australia’s biodiversity. Opposition to feral cat control focussed largely on ethical concerns and doubts about its efficacy. Implications. There is significant interest in, and commitment to, feral cat control among some groups of Australian society, beyond the traditional conservation community. Yet more information is needed about control methods and their effectiveness to better understand how these efforts are linked to threatened species outcomes.


2015 ◽  
Vol 37 (1) ◽  
pp. 120 ◽  
Author(s):  
Bronwyn A. Fancourt

Feral cats (Felis catus) have contributed to the extinction of numerous Australian mammals and are a major threat to many species of conservation significance. Small mammals are considered to be those at greatest risk of cat predation, with risk typically inferred from dietary studies. However, dietary studies may provide only weak inference as to the risk of cat predation for some species. The most compelling evidence of predation risk comes from direct observation of killing events; however, such observations are rare and photographic evidence is even rarer. I present photographic evidence of a feral cat killing and consuming an adult female Tasmanian pademelon (Thylogale billardierii). This observation provides direct evidence that feral cats can kill prey up to 4 kg in body mass, with potential implications for the conservation of medium-sized mammals.


2007 ◽  
Vol 34 (6) ◽  
pp. 467 ◽  
Author(s):  
Cheryl A. Hetherington ◽  
David Algar ◽  
Harriet Mills ◽  
Roberta Bencini

ERADICAT®, a sausage-type meat bait, has been developed for use in managing feral cat (Felis catus) populations throughout Western Australia. However, concern about potential exposure of non-target species to bait-delivered toxicants has led to the development of a technique to more specifically target feral cats using a pellet. Research into the consumption, by cats and native animals, of toxic pellets implanted within the ERADICAT® bait has been simulated using ball bearings as a substitute pellet. Results from our work indicate that encapsulating the toxicant may pose less risk of poisoning to chuditch (Dasyurus geoffroii), woylies (Bettongia pencillata) and southern brown bandicoots (Isoodon obesulus) as they consumed significantly fewer ball bearings (P = 0.003, <0.001, <0.001) than semi-feral cats (P = 0.07). Theoretically, a toxic pellet will not reduce the effectiveness of the ERADICAT® bait as there was no significant difference between consumption of baits and the consumption of ball bearings in feral cats (P = 0.07). Therefore, baits containing a toxic pellet have the potential to be a more selective method to control feral cats.


2014 ◽  
Vol 41 (5) ◽  
pp. 435 ◽  
Author(s):  
Tim S. Doherty ◽  
Andrew J. Bengsen ◽  
Robert A. Davis

Feral cats (Felis catus) have a wide global distribution and cause significant damage to native fauna. Reducing their impacts requires an understanding of how they use habitat and which parts of the landscape should be the focus of management. We reviewed 27 experimental and observational studies conducted around the world over the last 35 years that aimed to examine habitat use by feral and unowned cats. Our aims were to: (1) summarise the current body of literature on habitat use by feral and unowned cats in the context of applicable ecological theory (i.e. habitat selection, foraging theory); (2) develop testable hypotheses to help fill important knowledge gaps in the current body of knowledge on this topic; and (3) build a conceptual framework that will guide the activities of researchers and managers in reducing feral cat impacts. We found that feral cats exploit a diverse range of habitats including arid deserts, shrublands and grasslands, fragmented agricultural landscapes, urban areas, glacial valleys, equatorial to sub-Antarctic islands and a range of forest and woodland types. Factors invoked to explain habitat use by cats included prey availability, predation/competition, shelter availability and human resource subsidies, but the strength of evidence used to support these assertions was low, with most studies being observational or correlative. We therefore provide a list of key directions that will assist conservation managers and researchers in better understanding and ameliorating the impact of feral cats at a scale appropriate for useful management and research. Future studies will benefit from employing an experimental approach and collecting data on the relative abundance and activity of prey and other predators. This might include landscape-scale experiments where the densities of predators, prey or competitors are manipulated and then the response in cat habitat use is measured. Effective management of feral cat populations could target high-use areas, such as linear features and structurally complex habitat. Since our review shows often-divergent outcomes in the use of the same habitat components and vegetation types worldwide, local knowledge and active monitoring of management actions is essential when deciding on control programs.


2014 ◽  
Vol 59 (3) ◽  
Author(s):  
Marawan Abu-Madi ◽  
Jerzy Behnke

AbstractDoha city has a high feral cat population and studies of hospital records in Doha have shown that human toxoplasmosis also occurs. Clearly, there is a need to understand the role of cats as vectors of human toxoplasmosis in the city and as a first step we assessed the extent of patent Toxoplasma-like coccidial infections among feral cats. Oocysts in cat faeces were detected between June 2008 and April 2010, from a range of locations radiating out of the city centre in concentric semi circular/elliptic rings and by north, west and south divisions within each of the rings. In total 4,652 cats were sampled and overall prevalence of oocysts was 9.1%. Prevalence was 10.1% in the first summer, and then dropped to 8.4% in the following winter and further to 6.8% in the next summer before rising to 10.6% in the final winter of the study; this interaction between annual period and season was significant. There were also significant changes in prevalence across each of the consecutive months of the study, but no clear pattern was evident. Prevalence did not vary significantly by city sector and there was no difference in prevalence between the host sexes. We conclude therefore, that despite minor and significant perturbations, the prevalence of patent Toxoplasma-like coccidial infections among cats in Doha is remarkably stable throughout the year, across years and spatially within the city’s districts.


Sign in / Sign up

Export Citation Format

Share Document