scholarly journals Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor

2002 ◽  
Vol 99 (4) ◽  
pp. 2275-2280 ◽  
Author(s):  
D. E. Fouts ◽  
R. B. Abramovitch ◽  
J. R. Alfano ◽  
A. M. Baldo ◽  
C. R. Buell ◽  
...  
2016 ◽  
Vol 198 (17) ◽  
pp. 2330-2344 ◽  
Author(s):  
Eric Markel ◽  
Paul Stodghill ◽  
Zhongmeng Bao ◽  
Christopher R. Myers ◽  
Bryan Swingle

ABSTRACTPlant-pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an extracytoplasmic function (ECF) sigma factor encoded byPseudomonas syringae, controls expression of genes for alginate biosynthesis and genes involved with resisting osmotic and oxidative stress. AlgU is active while these bacteria are associated with plants, where its presence supports bacterial growth and disease symptoms. We found that AlgU is an important virulence factor forP. syringaepv. tomato DC3000 but that alginate production is dispensable for disease in host plants. This implies that AlgU regulates additional genes that facilitate bacterial pathogenesis. We used transcriptome sequencing (RNA-seq) to characterize the AlgU regulon and chromatin immunoprecipitation sequencing (ChIP-seq) to identify AlgU-regulated promoters associated with genes directly controlled by this sigma factor. We found that in addition to genes involved with alginate and osmotic and oxidative stress responses, AlgU regulates genes with known virulence functions, including components of the Hrp type III secretion system, virulence effectors, and thehrpLandhrpRStranscription regulators. These data suggest thatP. syringaepv. tomato DC3000 has adapted to use signals that activate AlgU to induce expression of important virulence functions that facilitate survival and disease in plants.IMPORTANCEPlant immune systems produce antimicrobial and bacteriostatic conditions in response to bacterial infection. Plant-pathogenic bacteria are adapted to suppress and/or tolerate these conditions; however, the mechanisms controlling these bacterial systems are largely uncharacterized. The work presented here provides a mechanistic explanation for howP. syringaepv. tomato DC3000 coordinates expression of multiple genetic systems, including those dedicated to pathogenicity, in response to environmental conditions. This work demonstrates the scope of AlgU regulation inP. syringaepv. tomato DC3000 and characterizes the promoter sequence regulated by AlgU in these bacteria.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180340 ◽  
Author(s):  
Bronwyn G. Butcher ◽  
Zhongmeng Bao ◽  
Janet Wilson ◽  
Paul Stodghill ◽  
Bryan Swingle ◽  
...  

2022 ◽  
Author(s):  
Haibi Wang ◽  
Amelia Lovelace ◽  
Amy Smith ◽  
Brian H Kvitko

In previous work, we determined the transcriptomic impacts of flg22 pre-induced Pattern Triggered Immunity (PTI) in Arabidopsis thaliana on the pathogen Pseudomonas syringae pv. tomato DC3000 (Pto). During PTI exposure we observed expression patterns in Pto reminiscent of those previously observed in a Pto algU mutant. AlgU is a conserved extracytoplasmic function sigma factor which has been observed to regulate over 950 genes in Pto in vitro. We sought to identify the AlgU regulon in planta.and which PTI-regulated genes overlapped with AlgU-regulated genes. In this study, we analyzed transcriptomic data from RNA-sequencing to identify the AlgU in planta regulon and its relationship with PTI. Our results showed that approximately 224 genes are induced by AlgU, while another 154 genes are downregulated by AlgU in Arabidopsis during early infection. Both stress response and virulence-associated genes were induced by AlgU, while the flagellar motility genes are downregulated by AlgU. Under the pre-induced PTI condition, more than half of these AlgU-regulated genes have lost induction/suppression in contrast to naive plants, and almost all function groups regulated by AlgU were affected by PTI.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1093-1102 ◽  
Author(s):  
Roberta Provvedi ◽  
Francesca Boldrin ◽  
Francesco Falciani ◽  
Giorgio Palù ◽  
Riccardo Manganelli

In order to gain additional understanding of the physiological mechanisms used by bacteria to maintain surface homeostasis and to identify potential targets for new antibacterial drugs, we analysed the variation of the Mycobacterium tuberculosis transcriptional profile in response to inhibitory and subinhibitory concentrations of vancomycin. Our analysis identified 153 genes differentially regulated after exposing bacteria to a concentration of the drug ten times higher than the MIC, and 141 genes differentially expressed when bacteria were growing in a concentration of the drug eightfold lower than the MIC. Hierarchical clustering analysis indicated that the response to these different conditions is different, although with some overlap. This approach allowed us to identify several genes whose products could be involved in the protection from antibiotic stress targeting the envelope and help to confer the basal level of M. tuberculosis resistance to antibacterial drugs, such as Rv2623 (UspA-like), Rv0116c, PE20-PPE31, PspA and proteins related to toxin–antitoxin systems. Moreover, we also demonstrated that the alternative sigma factor σ E confers basal resistance to vancomycin, once again underlining its importance in the physiology of the mycobacterial surface stress response.


2015 ◽  
Vol 53 (10) ◽  
pp. 725-731 ◽  
Author(s):  
Jun Seung Lee ◽  
Hye Ryun Ryu ◽  
Ji Young Cha ◽  
Hyung Suk Baik

2009 ◽  
Vol 22 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Nalvo F. Almeida ◽  
Shuangchun Yan ◽  
Magdalen Lindeberg ◽  
David J. Studholme ◽  
David J. Schneider ◽  
...  

Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system–independent factors also play a role in this interaction.


Sign in / Sign up

Export Citation Format

Share Document