scholarly journals Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia

2016 ◽  
Vol 113 (17) ◽  
pp. E2430-E2439 ◽  
Author(s):  
Christine C. Guo ◽  
Virginia E. Sturm ◽  
Juan Zhou ◽  
Efstathios D. Gennatas ◽  
Andrew J. Trujillo ◽  
...  

The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic–sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow.

2020 ◽  
Vol 31 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Kuan-Hua Chen ◽  
Alice Y Hua ◽  
Sandy J Lwi ◽  
Claudia M Haase ◽  
Howard J Rosen ◽  
...  

Abstract Subjective emotional experience that is congruent with a given situation (i.e., target emotions) is critical for human survival (e.g., feeling disgusted in response to contaminated food motivates withdrawal behaviors). Neurodegenerative diseases including frontotemporal dementia and Alzheimer’s disease affect brain regions critical for cognitive and emotional functioning, resulting in increased experience of emotions incongruent with the situation (i.e., non-target emotions, such as feeling happy when seeing someone grieving). We examined neuroanatomical correlates of subjective experience of non-target emotions in 147 patients with neurodegenerative diseases and 26 healthy individuals. Participants watched three films intended to elicit particular target emotions and rated their experience of negative and positive target and non-target emotions after watching each film. We found that smaller volume in left hemisphere regions (e.g., caudate, putamen, and dorsal anterior insula) was associated with greater experience of negative non-target emotions. Follow-up analyses confirmed that these effects were left-lateralized. No correlates emerged for positive non-target emotions. These findings suggest that volume loss in left-hemisphere regions produces a more diffuse, incongruent experience of non-target emotions. These findings provide a potential neuroanatomical basis for understanding how subjective emotional experience is constructed in the brain and how this can be disrupted in neurodegenerative disease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hajar Miranzadeh Mahabadi ◽  
Haseeb Bhatti ◽  
Robert B. Laprairie ◽  
Changiz Taghibiglou

AbstractThe type 1 and type 2 cannabinoid receptors (CB1 and CB2 receptors) are class A G protein-coupled receptors (GPCRs) that are activated by endogenous lipids called endocannabinoids to modulate neuronal excitability and synaptic transmission in neurons throughout the central nervous system (CNS), and inflammatory processes throughout the body. CB1 receptor is one of the most abundant GPCRs in the CNS and is involved in many physiological and pathophysiological processes, including mood, appetite, and nociception. CB2 receptor is primarily found on immunomodulatory cells of both the CNS and the peripheral immune system. In this study, we isolated lipid raft and non-lipid raft fractions of plasma membrane (PM) from mouse cortical tissue by using cold non-ionic detergent and sucrose gradient centrifugation to study the localization of CB1 receptor and CB2 receptor. Lipid raft and non-lipid raft fractions were confirmed by flotillin-1, caveolin-1 and transferrin receptor as their protein biomarkers. Both CB1 receptor and CB2 receptor were found in non-raft compartments that is inconsistent with previous findings in cultured cell lines. This study demonstrates compartmentalization of both CB1 receptor and CB2 receptor in cortical tissue and warrants further investigation of CB1 receptor and CB2 receptor compartmental distribution in various brain regions and cell types.


Religions ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Philip Smith ◽  
Florian Stoll

This paper calls for a broad conception of sacrifice to be developed as a resource for cultural sociology. It argues the term was framed too narrowly in the classical work of Hubert and Mauss. The later approach of Bataille permits a maximal understanding of sacrifice as non-utilitarian expenditures of money, energy, passion and effort directed towards the experience of transcendence. From this perspective, pilgrimage can be understood as a specific modality of sacrificial activity. This paper applies this understanding of sacrifice and pilgrimage to the annual Bayreuth “Wagner” Festival in Germany. Drawing on a multi-year mixed-methods study involving ethnography, semi-structured interviews and historical research, the article traces sacrificial expenditures at the level of individual festival attendees. These include financial costs, arduous travel, dedicated research of the artworks, and disciplines of the body. Some are lucky enough to experience transcendence in the form of deep emotional experience, and a sense of contact with sacred spaces and forces. Our study is intended as an exemplary paradigm case that can be drawn upon analogically by scholars. We suggest that other aspects of social experience, including many that are more ‘everyday’, can be understood through a maximal model of sacrifice and that a rigorous, wider comparative sociology could be developed using this tool.


Author(s):  
Sandhya Mangalore ◽  
Shiva Shanker Reddy Mukku ◽  
Sriharish Vankayalapati ◽  
Palanimuthu Thangaraju Sivakumar ◽  
Mathew Varghese

Abstract Background Phenotyping dementia is always a complex task for a clinician. There is a need for more practical biomarkers to aid clinicians. Objective The aim of the study is to investigate the shape profile of corpus callosum (CC) in different phenotypes of dementia. Materials and Methods Our study included patients who underwent neuroimaging in our facility as a part of clinical evaluation for dementia referred from Geriatric Clinic (2017–2018). We have analyzed the shape of CC and interpreted the finding using a seven-segment division. Results The sample included MPRAGE images of Alzheimer’ dementia (AD) (n = 24), posterior cortical atrophy- Alzheimer’ dementia (PCA-AD) (n = 7), behavioral variant of frontotemporal dementia (Bv-FTD) (n = 17), semantic variant frontotemporal dementia (Sv-FTD) (n = 11), progressive nonfluent aphasia (PNFA) (n = 4), Parkinson’s disease dementia (PDD) (n = 5), diffuse Lewy body dementia (n = 7), progressive supranuclear palsy (PSP) (n = 3), and corticobasal degeneration (CBD) (n = 3). We found in posterior dementias such as AD and PCA-AD that there was predominant atrophy of splenium of CC. In Bv-FTD, the genu and anterior half of the body of CC was atrophied, whereas in PNFA, PSP, PDD, and CBD there was atrophy of the body of CC giving a dumbbell like profile. Conclusion Our study findings were in agreement with the anatomical cortical regions involved in different phenotypes of dementia. Our preliminary study highlighted potential usefulness of CC in the clinical setting for phenotyping dementia in addition to clinical history and robust biomarkers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patricia Yuste-Checa ◽  
Victoria A. Trinkaus ◽  
Irene Riera-Tur ◽  
Rahmi Imamoglu ◽  
Theresa F. Schaller ◽  
...  

AbstractSpreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology.


2019 ◽  
Vol 30 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Maryam Ghaleh ◽  
Elizabeth H Lacey ◽  
Mackenzie E Fama ◽  
Zainab Anbari ◽  
Andrew T DeMarco ◽  
...  

Abstract Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion–symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.


2021 ◽  
pp. 089198872098891
Author(s):  
Regina Eun Young Kim ◽  
Robert Douglas Abbott ◽  
Soriul Kim ◽  
Robert Joseph Thomas ◽  
Chang-Ho Yun ◽  
...  

This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.


CNS Spectrums ◽  
2009 ◽  
Vol 14 (9) ◽  
pp. 467-471 ◽  
Author(s):  
Dan J. Stein ◽  
Daphne Simeon

ABSTRACTDepersonalization disorder (DPD) is characterized by a subjective sense of detachment from one's own being and a sense of unreality. An examination of the psychobiology of depersonalization symptoms may be useful in understanding the cognitive-affective neuroscience of embodiment. DPD may be mediated by neurocircuitry and neurotransmitters involved in the integration of sensory processing and of the body schema, and in the mediation of emotional experience and the identification of feelings. For example, DPD has been found to involve autonomic blunting, deactivation of sub-cortical structures, and disturbances in molecular systems in such circuitry. An evolutionary perspective suggests that attenuation of emotional responses, mediated by deactivation of limbic structures, may sometimes be advantageous in response to inescapable stress.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document