scholarly journals Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans

2016 ◽  
Vol 113 (36) ◽  
pp. 10055-10060 ◽  
Author(s):  
Xinxing Zhang ◽  
Kunhua Li ◽  
Rachel A. Jones ◽  
Steven D. Bruner ◽  
Rebecca A. Butcher

Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Knox ◽  
Nicolas Joly ◽  
Edmond M. Linossi ◽  
José A. Carmona-Negrón ◽  
Natalia Jura ◽  
...  

AbstractOver one billion people are currently infected with a parasitic nematode. Symptoms can include anemia, malnutrition, developmental delay, and in severe cases, death. Resistance is emerging to the anthelmintics currently used to treat nematode infection, prompting the need to develop new anthelmintics. Towards this end, we identified a set of kinases that may be targeted in a nematode-selective manner. We first screened 2040 inhibitors of vertebrate kinases for those that impair the model nematode Caenorhabditis elegans. By determining whether the terminal phenotype induced by each kinase inhibitor matched that of the predicted target mutant in C. elegans, we identified 17 druggable nematode kinase targets. Of these, we found that nematode EGFR, MEK1, and PLK1 kinases have diverged from vertebrates within their drug-binding pocket. For each of these targets, we identified small molecule scaffolds that may be further modified to develop nematode-selective inhibitors. Nematode EGFR, MEK1, and PLK1 therefore represent key targets for the development of new anthelmintic medicines.


2015 ◽  
Vol 112 (13) ◽  
pp. 3955-3960 ◽  
Author(s):  
Xinxing Zhang ◽  
Likui Feng ◽  
Satya Chinta ◽  
Prashant Singh ◽  
Yuting Wang ◽  
...  

Caenorhabditis elegans uses ascaroside pheromones to induce development of the stress-resistant dauer larval stage and to coordinate various behaviors. Peroxisomal β-oxidation cycles are required for the biosynthesis of the fatty acid-derived side chains of the ascarosides. Here we show that three acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, form different protein homo- and heterodimers with distinct substrate preferences. Mutations in the acyl-CoA oxidase genes acox-1, -2, and -3 led to specific defects in ascaroside production. When the acyl-CoA oxidases were expressed alone or in pairs and purified, the resulting acyl-CoA oxidase homo- and heterodimers displayed different side-chain length preferences in an in vitro activity assay. Specifically, an ACOX-1 homodimer controls the production of ascarosides with side chains with nine or fewer carbons, an ACOX-1/ACOX-3 heterodimer controls the production of those with side chains with seven or fewer carbons, and an ACOX-2 homodimer controls the production of those with ω-side chains with less than five carbons. Our results support a biosynthetic model in which β-oxidation enzymes act directly on the CoA-thioesters of ascaroside biosynthetic precursors. Furthermore, we identify environmental conditions, including high temperature and low food availability, that induce the expression of acox-2 and/or acox-3 and lead to corresponding changes in ascaroside production. Thus, our work uncovers an important mechanism by which C. elegans increases the production of the most potent dauer pheromones, those with the shortest side chains, under specific environmental conditions.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 312
Author(s):  
Tina V. A. Hansen ◽  
Heinz Sager ◽  
Céline E. Toutain ◽  
Elise Courtot ◽  
Cédric Neveu ◽  
...  

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 315-332 ◽  
Author(s):  
Steven W. Flavell ◽  
David M. Raizen ◽  
Young-Jai You

Caenorhabditis elegans’ behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.


2020 ◽  
Vol 94 ◽  
Author(s):  
T. Brophy ◽  
R.J. Mc Donnell ◽  
D.K. Howe ◽  
D.R. Denver ◽  
J.L. Ross ◽  
...  

Abstract A survey of nematodes associated with terrestrial slugs was conducted in residential gardens, nurseries, greenhouses and agricultural sites located in and around Edmonton, Alberta, Canada. A total of 2406 slugs were collected from 82 sites. Slugs were decapitated and cadavers were incubated for two weeks, with emerging nematodes removed and processed for identification. Nematodes were identified using molecular sequence data for the 18S ribosomal DNA. Nematodes were recovered from 20 of the 82 sites surveyed, with 24.4% of the slugs infected with nematodes. A total of seven nematodes were identified to species level, including Caenorhabditis elegans, Panagrolaimus papillosus, Pellioditis typica, Pelodera pseudoteres, Rhabditella axei, Rhabditoides inermiformis and Phasmarhabditis californica. An additional four specimens were identified to genus level, including Oscheius sp. (9), Pristionchus sp., Rhabditis sp. and Rhabditophanes sp. (1). The two most common nematode species were C. elegans and P. pseudoteres. The facultative parasite, P. californica, was recovered from a single Arion rufus specimen, collected from a seasonal nursery. To our knowledge, this study represents the first survey of slug-associated nematodes in Canada.


2006 ◽  
Vol 17 (8) ◽  
pp. 3678-3688 ◽  
Author(s):  
Prema Sundaram ◽  
Benjamin Echalier ◽  
Wang Han ◽  
Dawn Hull ◽  
Lisa Timmons

RNA interference (RNAi) is a conserved gene-silencing phenomenon that can be triggered by delivery of double-stranded RNA (dsRNA) to cells and is a widely exploited technology in analyses of gene function. Although a number of proteins that facilitate RNAi have been identified, current descriptions of RNAi and interrelated mechanisms are far from complete. Here, we report that the Caenorhabditis elegans gene haf-6 is required for efficient RNAi. HAF-6 is a member of the ATP-binding cassette (ABC) transporter gene superfamily. ABC transporters use ATP to translocate small molecule substrates across the membranes in which they reside, often against a steep concentration gradient. Collectively, ABC transporters are involved in a variety of activities, including protective or barrier mechanisms that export drugs or toxins from cells, organellar biogenesis, and mechanisms that protect against viral infection. HAF-6 is expressed predominantly in the intestine and germline and is localized to intracellular reticular organelles. We further demonstrate that eight additional ABC genes from diverse subfamilies are each required for efficient RNAi in C. elegans. Thus, the ability to mount a robust RNAi response to dsRNA depends upon the deployment of two ancient systems that respond to environmental assaults: RNAi mechanisms and membrane transport systems that use ABC proteins.


Parasitology ◽  
2004 ◽  
Vol 128 (S1) ◽  
pp. S49-S70 ◽  
Author(s):  
J. S. GILLEARD

There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.


2018 ◽  
Author(s):  
Robert Sobkowiak ◽  
Natalia Bojarska ◽  
Emilia Krzyżaniak ◽  
Karolina Wągiel ◽  
Nikoletta Ntalli

AbstractPlant–parasitic nematodes cause serious damage to various agricultural crops worldwide, and their control necessitates environmentally safe measures. Plant secondary metabolites of botanical origin are tested here–in to study their effect in Meloidogyne incognita locomotion, being this an important factor affecting host inoculation inside the soil. We compare the effect to the respective behavioral responses of the model organism Caenorhabditis elegans. The tested botanical nematicidals, all reported of activity against Meloidogyne sp. in our previous works, belong to different chemical groups of small molecular weight molecules encompassing acids, alcohols, aldehydes and ketones. Specifically we report on the attractant or repellent properties of trans–anethole, (E,E)–2,4–decadienal, (E)–2–decenal, fostiazate, and 2–undecanone. The treatments for both nematode species were made at sublethal concentration levels, namely 1mM (<EC50), and the chemical control used for the experiment was the commercial nematicide fosthiazate and oxamyl. According to our results, trans–anethole, decenal, and oxamyl act as C. elegans attractants. 2–undecanone strongly attracts M. incognita. These findings can be of use in the development of nematicidal formulates, contributing to the disruption of nematode chemotaxis to root systems.


2021 ◽  
Vol 6 (55) ◽  
pp. eabe3950 ◽  
Author(s):  
Xianke Dong ◽  
Sina Kheiri ◽  
Yangning Lu ◽  
Zhaoyi Xu ◽  
Mei Zhen ◽  
...  

Learning from the locomotion of natural organisms is one of the most effective strategies for designing microrobots. However, the development of bioinspired microrobots is still challenging because of technical bottlenecks such as design and seamless integration of high-performance actuation mechanism and high-density energy source for untethered locomotion. Directly harnessing the activation energy and intelligence of living tissues in synthetic micromachines provides an alternative route to developing biohybrid microrobots. Here, we propose an approach to engineering the genetic and nervous systems of a nematode worm, Caenorhabditis elegans, and creating an untethered, highly controllable living soft microrobot (called “RoboWorm”). A living worm is engineered through optogenetic and biochemical methods to shut down the signal transmissions between its neuronal and muscular systems while its muscle cells still remain optically excitable. Through dynamic modeling and experimental verification of the worm crawling, we found that the phase difference between the worm body curvature and the muscular activation pattern generates the thrust force for crawling locomotion. By reproducing the phase difference via optogenetic excitation of the worm body muscles, we emulated the major worm crawling behaviors in a controllable manner. Furthermore, with real-time visual feedback of the worm crawling, we realized closed-loop regulation of the movement direction and destination of single worms. This technology may facilitate scientific studies on the biophysics and neural basis of crawling locomotion of C. elegans and other nematode species.


2015 ◽  
Vol 26 (17) ◽  
pp. 3030-3046 ◽  
Author(s):  
Marina E. Crowder ◽  
Jonathan R. Flynn ◽  
Karen P. McNally ◽  
Daniel B. Cortes ◽  
Kari L. Price ◽  
...  

Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin.


Sign in / Sign up

Export Citation Format

Share Document