scholarly journals Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms

2016 ◽  
Vol 113 (43) ◽  
pp. 12202-12207 ◽  
Author(s):  
Timothy Alexander Hore ◽  
Ferdinand von Meyenn ◽  
Mirunalini Ravichandran ◽  
Martin Bachman ◽  
Gabriella Ficz ◽  
...  

Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe2+ recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.

Acta Naturae ◽  
2013 ◽  
Vol 5 (4) ◽  
pp. 15-21 ◽  
Author(s):  
E. A. Vaskova ◽  
A. E. Stekleneva ◽  
S. P. Medvedev ◽  
S. M. Zakian

To date biomedicine and pharmacology have required generating new and more consummate models. One of the most perspective trends in this field is using induced pluripotent stem cells (iPSCs). iPSC application requires careful high-throughput analysis at the molecular, epigenetic, and functional levels. The methods used have revealed that the expression pattern of genes and microRNA, DNA methylation, as well as the set and pattern of covalent histone modifications in iPSCs, are very similar to those in embryonic stem cells. Nevertheless, iPSCs have been shown to possess some specific features that can be acquired during the reprogramming process or are remnants of epigenomes and transcriptomes of the donor tissue. These residual signatures of epigenomes and transcriptomes of the somatic tissue of origin were termed epigenetic memory. In this review, we discuss the epigenetic memory phenomenon in the context of the reprogramming process, its influence on iPSC properties, and the possibilities of its application in cell technologies.


Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 569-579 ◽  
Author(s):  
Anran Fan ◽  
Kuiying Ma ◽  
Xinglan An ◽  
Yu Ding ◽  
Peipei An ◽  
...  

TET1 is implicated in maintaining the pluripotency of embryonic stem cells. However, its precise effects on induced pluripotent stem cells (iPSCs), and particularly on porcine iPSCs (piPSCs), are not well defined. To investigate the role of TET1 in the pluripotency and differentiation of piPSCs, piPSCs were induced from porcine embryonic fibroblasts by overexpression ofPOU5F1(OCT4),SOX2,KLF4, andMYC(C-MYC). siRNAs targeting toTET1were used to transiently knockdown the expression ofTET1in piPSCs. Morphological abnormalities and loss of the undifferentiated state of piPSCs were observed in the piPSCs after the downregulation ofTET1. The effects ofTET1knockdown on the expression of key stem cell factors and differentiation markers were analyzed to gain insights into the molecular mechanisms underlying the phenomenon. The results revealed that knockdown ofTET1resulted in the downregulated expression of pluripotency-related genes, such asLEFTY2,KLF2, andSOX2, and the upregulated expression of differentiation-related genes includingPITX2,HAND1,GATA6, andLEF1. However,POU5F1,MYC,KLF4, andNANOGwere actually not downregulated. Further analysis showed that the methylation levels of the promoters forPOU5F1andMYCincreased significantly afterTET1downregulation, whereas there were no obvious changes in the promoters ofSOX2,KLF4, andNANOG. The methylation of the whole genome increased, while hydroxymethylation slightly declined. Taken together, these results suggest thatTET1may play important roles in the self-renewal of piPSCs and the maintenance of their characteristics by regulating the expression of genes and the DNA methylation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Siti Razila Abdul Razak ◽  
Yukihiro Baba ◽  
Hiromitsu Nakauchi ◽  
Makoto Otsu ◽  
Sumiko Watanabe

MicroRNAs are differentially expressed in cells and regulate multiple biological processes. We have been analyzing comprehensive expression patterns of microRNA in human and mouse embryonic stem and induced pluripotent stem cells. We determined microRNAs specifically expressed in these pluripotent stem cells, and miR-142-3p is one of such microRNAs. miR-142-3p is expressed at higher levels in induced pluripotent stem cells relative to fibroblasts in mice. Level of expression of miR142-3p decreased during embryoid body formation from induced pluripotent stem cells. Loss-of-function analyses of miR-142-3p suggested that miR-142-3p plays roles in the proliferation and differentiation of induced pluripotent stem cells. CpG motifs were found in the 5′ genomic region of themiR-142-3p; they were highly methylated in fibroblasts, but not in undifferentiated induced pluripotent stem cells. Treating fibroblasts with 5-aza-2′-deoxycytidine increased the expression of miR-142-3p significantly and reduced methylation at the CpG sites, suggesting that the expression of miR-142-3p is suppressed by DNA methylation in fibroblasts. Luciferase analysis using various lengths of the 5′ genomic region of miR142-3p indicated that CpGs in the proximal enhancer region may play roles in suppressing the expression of miR-142-3p in fibroblasts.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document