scholarly journals An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma

2016 ◽  
Vol 113 (51) ◽  
pp. E8247-E8256 ◽  
Author(s):  
Amit D. Gujar ◽  
Son Le ◽  
Diane D. Mao ◽  
David Y. A. Dadey ◽  
Alice Turski ◽  
...  

Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD+). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD+levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD+-dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix–loop–helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD+metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 58-58
Author(s):  
Anna E. Marneth ◽  
Jonas S. Jutzi ◽  
Angel Guerra-Moreno ◽  
Michele Ciboddo ◽  
María José Jiménez Santos ◽  
...  

Abstract Somatic mutations in the ER chaperone calreticulin (CALR) are frequent and disease-initiating in myeloproliferative neoplasms (MPN). Although the mechanism of mutant CALR-induced MPN is known to involve pathogenic binding between mutant CALR and MPL, this insight has not yet been exploited therapeutically. Consequently, a major deficiency is the lack of clonally selective therapeutic agents with curative potential. Hence, we set out to discover and validate unique genetic dependencies for mutant CALR-driven oncogenesis. We first performed a whole-genome CRISPR knockout screen in CALR Δ52 MPL-expressing hematopoietic cells to identify genes that were differentially required for the growth of cytokine-independent, transformed CALR Δ52 cells as compared to control cells. Using gene-set enrichment analyses, we identified the N-glycan biosynthesis, unfolded protein response, and the protein secretion pathways to be amongst the most significantly differentially depleted pathways (FDR q values <0.001, 0.014, and 0.025, respectively) in CALR Δ52 cells. We performed a secondary CRISPR pooled screen focused on significant pathways from the primary screen and confirmed these findings. Strikingly, seven of the top ten hits in both screens were linked to protein N-glycosylation. Four of those genes encode proteins involved in the enzymatic activity of dolichol-phosphate mannose synthase (DPM1, DPM2, DPM3, and MPDU1). This enzyme synthesizes dolichol D-mannosyl phosphate, an essential substrate for protein N-glycosylation. Importantly, these findings from an unbiased whole-genome screen align with prior mechanistic studies demonstrating that both the N-glycosylation sites on MPL and the lectin-binding sites on CALR Δ52 are required for mutant CALR-driven oncogenesis. We next performed single gene CRISPR Cas9 validation studies and found that DPM2 is required for CALR Δ52-mediated transformation, as demonstrated by increased cell death, reduced p-STAT5 and decreased MPL cell-surface levels, when Dpm2 is knocked out. Importantly, cells cultured in cytokine-rich medium were unaffected by DPM2 loss. Upon cytokine withdrawal, a sub-clone of non-edited Dpm2WT CALR Δ52 cells grew out, further demonstrating requirement for DPM2 for the survival of CALR Δ52 cells. Additionally, we observed a >50% reduction in ex vivo myeloid colony formation of murine CalrΔ52 Dpm2 ko bone marrow (BM) compared with CRISPR-Cas9 non-targeting controls, with non-significant effects on CalrWT BM cells. To enable clinical translation, we performed a pharmacological screen targeting pathways significantly depleted in our CRISPR screens. Screening 70 drugs, we found that the N-glycosylation pathway was the only pathway in which all tested compounds preferentially killed CALR Δ52 transformed cells. We then treated primary Calr Δ52/+ mice with a clinical grade N-glycosylation (N-Gi) inhibitor and found platelet counts (Sysmex) to be significantly reduced (vehicle 3x10 6/mL, N-Gi 1x10 6/mL after 18 days, p<.0001). Concordantly, the proportion of megakaryocyte erythrocyte progenitors (MEPs) was significantly reduced in CalrΔ52 BM (p=0.03). We next performed competitive BM transplantation assays using CD45.2 UBC-GFP MxCre CalrΔ52 knockin and CD45.1 mice. We found that mice treated with N-Gi had significantly reduced platelet counts (vehicle 1440x10 6/mL, N-Gi 845x10 6/mL, p=0.005) as well as significantly reduced platelet chimerism (vehicle 55%, N-Gi 27%, p<0.001), indicating a distinct vulnerability of CalrΔ52 over WT cells. Finally, we interrogated RNA-sequencing data from primary human MPN platelets. We found N-glycosylation-related pathways to be significantly upregulated in CALR-mutated platelets (n = 13) compared to healthy control platelets (n = 21), highlighting the relevance of our findings to human MPN. In summary, using unbiased genetic and focused pharmacological screens, we identified the N-glycan biosynthesis pathway as essential for mutant CALR-driven oncogenesis. Using a pre-clinical MPN model, we found that in vivo inhibition of N-glycosylation normalizes key features of MPN and preferentially targets CalrΔ52 over WT cells. These findings have therapeutic implications through inhibiting N-glycosylation alone or in combination with other agents to advance the development of clonally selective therapeutic approaches in CALR-mutant MPN. AEM and JSJ contributed equally. Figure 1 Figure 1. Disclosures Mullally: Janssen, PharmaEssentia, Constellation and Relay Therapeutics: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1319-1319
Author(s):  
Vladimir Jankovic ◽  
Alessia Ciarrocchi ◽  
Tony DeBlasio ◽  
Robert Benezra ◽  
Stephen D. Nimer

Abstract The ability of hematopoietic stem cells to tightly regulate the transition from relative quiescence and self-renewal to the transiently amplifying, differentiating progenitor fate is critical for HSC homeostasis as well as their regenerative capacity. We have recently described the diminished frequency and rapid exhaustion of HSC self-renewal capacity in the absence of the dominant negative helix-loop-helix molecule Id1. Furthermore, Id1 null HSCs have an increased rate of cycling, coupled with accelerated myeloid commitment both in vivo and in vitro. This is reflected in the elevated expression of myelo-erythroid transcription factors (c/EBPalpha and GATA1) within the Lin−c-kit+Sca-1+ population - “myeloid priming”. The major targets of Id1 mediated transcriptional repression are the ubiquitous E protein E2A as well as Ets transcription factors (Ets1 and Ets2). We hypothesized that the unrestrained activity of these and/or other targets of Id1 transcriptional repression leads to premature HSC commitment in Id1 null animals. Indeed, we show that HSC differentiation in culture can be delayed by transduction of E2A directed shRNA specifically in Id1 null, but not in wild-type Id1 expressing cells. This indicates an abnormal E2A activity in Id1 null HSCs that could be responsible for their increased differentiation status. To further define the transcriptional deregulation in Id1 null HSCs, we have used the Affymetrix microarray technology. We observed ~3 fold increased expression of the CDK inhibitor p21 in freshly isolated Id1 null HSCs and have confirmed this result by multiple independent qPCR measurements. The transcriptional induction of p21 by E2A as well as its repression by Id1 have been well established. Therefore, the observed p21 induction could be explained by the elevated level of E2A activity in HSCs in the absence of Id1 expression. To explore the functional significance of Id1 mediated p21 regulation in HSCs, we have generated p21/Id1 double knockout animals. Surprisingly, despite its reported function in restricting the cell cycle entry of normal HSCs, we show that in the context of Id1 loss, p21 expression is required for the accelerated HSC cycling, and unlike Id1 single null HSCs, p21/Id1 double knockout HSCs do not show accelerated myeloid differentiation in culture. Therefore, we propose that Id1 actively represses E2A activity in HSCs, as well as the induction of p21, which could be an important component of the HSC commitment program. Further studies will be presented defining the in vivo relevance of the Id1/p21 genetic interaction for HSC growth and differentiation.


2020 ◽  
Author(s):  
Rafael A. Paiva ◽  
António G. G. Sousa ◽  
Camila V. Ramos ◽  
Mariana Ávila ◽  
Jingtao Lilue ◽  
...  

ABSTRACTT lymphocyte differentiation in the thymus relies on high cellular turnover, and cell competition enforces thymocyte replenishment. If deprived of competent progenitors, the thymus can maintain thymopoiesis autonomously for several weeks but this bears a high risk of leukemia. Here we show that double negative 3 early (DN3e) thymocytes can acquire stem cell like properties, which enables them to maintain thymopoiesis. Specifically, DN3e proved to be long-lived, they proliferated and differentiated in vivo, were necessary for autonomous thymopoiesis, and included DNA-label-retaining cells. Single cell RNAseq revealed a transcriptional program of thymopoiesis similar in autonomy and the controls. Nevertheless, a new population was identified in thymus autonomy that was enriched for an aberrant Notch target gene signature and bypassed the β−selection checkpoint. In sum, DN3e have the potential to self-renew and differentiate in vivo if cell competition is compromised but this enables the accumulation of atypical cells, probably leading to leukemia.


2019 ◽  
Author(s):  
Aleix Puig-Barbé ◽  
Joaquín de Navascués

ABSTRACTMultipotent adult stem cells must balance self-renewal with differentiation into various mature cell types. How this activity is molecularly regulated is poorly understood. By using genetic and molecular analyses in vivo, we show that a small network of basic Helix-Loop-Helix (bHLH) transcription factors controls both stemness and bi-potential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da, homolog to mammalian E proteins) maintain the self-renewal of intestinal stem cells and antagonise the activity of heterodimers of Da and Scute (Sc, homolog to ASCL and known to promote intestinal secretory differentiation). We find a novel role for the HLH factor Extramacrochaetae (Emc, homolog to Id proteins), titrating Da and Sc to promote absorptive differentiation. We further show that Emc prevents committed absorptive progenitors from de-differentiating, revealing the plasticity of these cells. This mechanism of interaction partner-switching enables the active maintenance of stemness, but primes stem cells for differentiation along two alternative fates. Such regulatory logic could be recapitulated in other bipotent stem cell systems.


2004 ◽  
Vol 24 (7) ◽  
pp. 2698-2709 ◽  
Author(s):  
Shaun M. Cowley ◽  
Richard S. Kang ◽  
John V. Frangioni ◽  
Jason J. Yada ◽  
Alec M. DeGrand ◽  
...  

ABSTRACT The recruitment of corepressors by DNA-bound repressors is likely to be a critical rate-limiting step in the transcriptional regulation of many genes. An excellent paradigm for such an interaction is the association of the basic helix-loop-helix zipper protein Mad1 with the corepressor mSin3A. When bound together, the Sin3 interaction domain (SID) of Mad1 forms extensive hydrophobic contacts with the four-helix bundle formed by the paired amphipathic helix 2 (PAH2) domain of mSin3A. Using the costructure to predict the principle residues required for binding, we have carried out an extensive mutational analysis to examine the Mad1 SID-mSin3A PAH2 interaction in vitro and in vivo. Bulky hydrophobic residues in the α1 (I308 and V311) and α2 (L329 and L332) helices of the PAH2 domain are necessary to accommodate the precise arrangement of bulky (L12) and short (A15 and A16) hydrophobic residues in the amphipathic Mad1 SID. We have also used phage display to derive an optimal SID, which shows an essentially identical arrangement of key residues. By manipulating these key residues, we have generated altered-specificity Mad1 SID mutants that bind only to a PAH2 domain with a reciprocal mutation, permitting us to demonstrate for the first time that these domains interact directly in vivo. We have also found that the integrity of the PAH1 domain affects the Mad1 SID-PAH2 interaction. It is conceivable that cross talk between different PAH domains and their binding partners helps to determine the subunit composition and order of assembly of mSin3A complexes.


2020 ◽  
Vol 117 (38) ◽  
pp. 23663-23673 ◽  
Author(s):  
Sydney M. Moyer ◽  
Amanda R. Wasylishen ◽  
Yuan Qi ◽  
Natalie Fowlkes ◽  
Xiaoping Su ◽  
...  

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion ofMdm2, a gene that encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 chromatin immunoprecipitation (ChIP) sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes, which includedMdm2but notp21. Global p53 activation caused a metaplastic phenotype in the pancreas that was missing in mice with acinar-specific p53 activation, suggesting non-cell-autonomous effects. The p53 cellular response at single-cell resolution in the intestine altered transcriptional cell state, leading to a proximal enterocyte population enriched for genes within oxidative phosphorylation pathways. In addition, a population of active CD8+ T cells was recruited. Combined, this study provides a comprehensive profile of the p53 transcriptional response in vivo, revealing both tissue-specific transcriptomes and a unique signature, which were integrated to induce both cell-autonomous and non-cell-autonomous responses and transcriptional plasticity.


2020 ◽  
Vol 117 (9) ◽  
pp. 4885-4893 ◽  
Author(s):  
David A. Anderson ◽  
Theresa L. Murphy ◽  
Robert N. Eisenman ◽  
Kenneth M. Murphy

We previously found that MYCL is required by aBatf3-dependent classical dendritic cell subset (cDC1) for optimal CD8 T cell priming, but the underlying mechanism has remained unclear. The MAX-binding proteins encompass a family of transcription factors with overlapping DNA-binding specificities, conferred by a C-terminal basic helix-loop-helix domain, which mediates heterodimerization. Thus, regulation of transcription by these factors is dependent on divergent N-terminal domains. The MYC family, including MYCL, has actions that are reciprocal to the MXD family, which is mediated through the recruitment of higher-order activator and repressor complexes, respectively. As potent proto-oncogenes, models of MYC family function have been largely derived from their activity at supraphysiological levels in tumor cell lines. MYC and MYCN have been studied extensively, but empirical analysis of MYCL function had been limited due to highly restricted, lineage-specific expression in vivo. Here we observed thatMyclis expressed in immature cDC1s but repressed on maturation, concomitant withMxd1induction in mature cDC1s. We hypothesized that MYCL and MXD1 regulate a shared, but reciprocal, transcriptional program during cDC1 maturation. In agreement, immature cDC1s inMycl−/−-deficient mice exhibited reduced expression of genes that regulate core biosynthetic processes. Mature cDC1s fromMxd1−/−mice exhibited impaired ability to inhibit the transcriptional signature otherwise supported by MYCL. The present study reveals LMYC and MXD1 as regulators of a transcriptional program that is modulated during the maturation ofBatf3-dependent cDC1s.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

2019 ◽  
Author(s):  
Sandeep Chakraborty

‘Prime-editing’ proposes to replace traditional programmable nucleases (CRISPR-Cas9) using a catalytically impaired Cas9 (dCas9) connected to a engineered reverse transcriptase, and a guide RNA encoding both the target site and the desired change. With just a ‘nick’ on one strand, it is hypothe- sized, the negative, uncontrollable effects arising from double-strand DNA breaks (DSBs) - translocations, complex proteins, integrations and p53 activation - will be eliminated. However, sequencing data pro- vided (Accid:PRJNA565979) reveal plasmid integration, indicating that DSBs occur. Also, looking at only 16 off-targets is inadequate to assert that Prime-editing is more precise. Integration of plasmid occurs in all three versions (PE1/2/3). Interestingly, dCas9 which is known to be toxic in E. coli and yeast, is shown to have residual endonuclease activity. This also affects studies that use dCas9, like base- editors and de/methylations systems. Previous work using hRad51–Cas9 nickases also show significant integration in on-targets, as well as off-target integration [1]. Thus, we show that cellular response to nicking involves DSBs, and subsequent plasmid/Cas9 integration. This is an unacceptable outcome for any in vivo application in human therapy.


Sign in / Sign up

Export Citation Format

Share Document