scholarly journals Interaction between top-down and bottom-up control in marine food webs

2017 ◽  
Vol 114 (8) ◽  
pp. 1952-1957 ◽  
Author(s):  
Christopher Philip Lynam ◽  
Marcos Llope ◽  
Christian Möllmann ◽  
Pierre Helaouët ◽  
Georgia Anne Bayliss-Brown ◽  
...  

Climate change and resource exploitation have been shown to modify the importance of bottom-up and top-down forces in ecosystems. However, the resulting pattern of trophic control in complex food webs is an emergent property of the system and thus unintuitive. We develop a statistical nondeterministic model, capable of modeling complex patterns of trophic control for the heavily impacted North Sea ecosystem. The model is driven solely by fishing mortality and climatic variables and based on time-series data covering >40 y for six plankton and eight fish groups along with one bird group (>20 y). Simulations show the outstanding importance of top-down exploitation pressure for the dynamics of fish populations. Whereas fishing effects on predators indirectly altered plankton abundance, bottom-up climatic processes dominate plankton dynamics. Importantly, we show planktivorous fish to have a central role in the North Sea food web initiating complex cascading effects across and between trophic levels. Our linked model integrates bottom-up and top-down effects and is able to simulate complex long-term changes in ecosystem components under a combination of stressor scenarios. Our results suggest that in marine ecosystems, pathways for bottom-up and top-down forces are not necessarily mutually exclusive and together can lead to the emergence of complex patterns of control.

2013 ◽  
Vol 71 (2) ◽  
pp. 406-416 ◽  
Author(s):  
T. O. M. Reilly ◽  
H. M. Fraser ◽  
R. J. Fryer ◽  
J. Clarke ◽  
S. P. R. Greenstreet

Abstract Reilly, T. O. M., Fraser, H. M., Fryer, R. J., Clarke, J., and Greenstreet, S. P. R. 2014. Interpreting variation in fish-based food web indicators: the importance of “bottom-up limitation” and “top-down control” processes. – ICES Journal of Marine Science, 71: 406–416. Proposed indicators for the Marine Strategy Framework Directive (MSFD) food webs Descriptor focus on structural elements of food webs, and in particular on the abundance and productivity of top predators. However, the inferences that can be drawn from such indicators depend on whether or not the predators are “bottom-up limited” by the availability of their prey. Many seabird populations appear to be “bottom-up limited” so that variation in their reproductive success and/or abundance reflects changes in lower trophic levels. Here we find that gadoid fish predators off the Firth of Forth, southeast Scotland, do not appear to be “bottom-up limited” by the biomass of their main prey, 0-group sandeels; gadoid biomass and feeding performance was independent of sandeel biomass. Variability in food web indicators based on these gadoid predators seems to impart little insight into underlying processes occurring at lower trophic levels in the local food web. The implications of this in terms of how the currently proposed MSFD food web indicators should be used and interpreted are considered, and the ramifications in terms of setting targets representing good environmental status for both fish and seabird communities are discussed.


2019 ◽  
pp. 206-230
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

This chapter uses simple theory and experiments to address the fundamental question of what determines the biomass (abundance) of different trophic levels (plants, herbivores, carnivores) in a community. Theory predicts joint control of trophic-level abundance by bottom-up effects (resources) and top-down effects (predation), with the relative strengths of top-down and bottom-up effects depending on the number of trophic levels and species composition within a trophic level. Observations and experiments support these predictions. Trophic cascades provide evidence for the importance of top-down processes, but the existence of a trophic cascade says little about the relative importance of predator limitation versus resource limitation. Cascading effects result from either the consumptive or non-consumptive effects of predators, or both. Natural systems contain as few as three and as many as six trophic levels, but what determines this number is unknown. Evidence suggests that both productivity and ecosystem size, perhaps in combination, are the primary factors.


2019 ◽  
Vol 35 (4) ◽  
pp. 185-198 ◽  
Author(s):  
Allison Louthan ◽  
Emily Valencia ◽  
Dino J. Martins ◽  
Travis Guy ◽  
Jacob Goheen ◽  
...  

AbstractCascading effects of high trophic levels onto lower trophic levels have been documented in many ecosystems. Some studies also show evidence of extended trophic cascades, in which guilds dependent on lower trophic levels, but uninvolved in the trophic cascade themselves, are affected by the trophic cascade due to their dependence on lower trophic levels. Top-down effects of large mammals on plants could lead to a variety of extended trophic cascades on the many guilds dependent on plants, such as pollinators. In this study, floral-visitor and floral abundances and assemblages were quantified within a series of 1-ha manipulations of large-mammalian herbivore density in an African savanna. Top-down effects of large mammals on the composition of flowers available for floral visitors are first shown, using regressions of herbivore activity on metrics of floral and floral-visitor assemblages. An extended trophic cascade is also shown: the floral assemblage further altered the assemblage of floral visitors, according to a variety of approaches, including a structural equation modelling approach (model with an extended trophic cascade was supported over a model without, AICc weight = 0.984). Our study provides support for extended trophic cascades affecting floral visitors, suggesting that trophic cascades can have impacts throughout entire communities.


2015 ◽  
Vol 282 (1812) ◽  
pp. 20151234 ◽  
Author(s):  
Seth M. Rudman ◽  
Mariano A. Rodriguez-Cabal ◽  
Adrian Stier ◽  
Takuya Sato ◽  
Julian Heavyside ◽  
...  

Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood ( Populus trichocarpa ) and three-spined stickleback ( Gasterosteus aculeatus ), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.


2012 ◽  
Vol 367 (1605) ◽  
pp. 3008-3017 ◽  
Author(s):  
Jonathan B. Shurin ◽  
Jessica L. Clasen ◽  
Hamish S. Greig ◽  
Pavel Kratina ◽  
Patrick L. Thompson

The effects of global and local environmental changes are transmitted through networks of interacting organisms to shape the structure of communities and the dynamics of ecosystems. We tested the impact of elevated temperature on the top-down and bottom-up forces structuring experimental freshwater pond food webs in western Canada over 16 months. Experimental warming was crossed with treatments manipulating the presence of planktivorous fish and eutrophication through enhanced nutrient supply. We found that higher temperatures produced top-heavy food webs with lower biomass of benthic and pelagic producers, equivalent biomass of zooplankton, zoobenthos and pelagic bacteria, and more pelagic viruses. Eutrophication increased the biomass of all organisms studied, while fish had cascading positive effects on periphyton, phytoplankton and bacteria, and reduced biomass of invertebrates. Surprisingly, virus biomass was reduced in the presence of fish, suggesting the possibility for complex mechanisms of top-down control of the lytic cycle. Warming reduced the effects of eutrophication on periphyton, and magnified the already strong effects of fish on phytoplankton and bacteria. Warming, fish and nutrients all increased whole-system rates of net production despite their distinct impacts on the distribution of biomass between producers and consumers, plankton and benthos, and microbes and macrobes. Our results indicate that warming exerts a host of indirect effects on aquatic food webs mediated through shifts in the magnitudes of top-down and bottom-up forcing.


Author(s):  
A. Riedel ◽  
B. Riedel ◽  
D. Tengen ◽  
M. Gerke

<p><strong>Abstract.</strong> The project ‘Determinations on the absolute sea-level rise on the German North Sea and Baltic Sea coasts’, funded by the Federal Ministry of Education and Research (BMBF) , has the overall goal to estimate the absolute sea level change in those coastal areas. A major issue associated with detecting absolute sea level changes is the relative character of tidal records. To calibrate the tidal records, a spatial vertical land movement model for northern Germany has been set up. To this end we combined a network from German Height Reference Systems (Deutsches Haupthöhennetz, DHHN 95 and DHHN 2016), reprocessed data from 180 permanent GNSS stations and results from Persistent Scatterer (PS) Interferometry.</p><p>PS processing covers an approximately 50&amp;thinsp;km wide strip along the 1200&amp;thinsp;km long German coast. We processed two tracks from Sentinel-1A and -1B from October 2014 to September 2018 and generated a combined spatial solution for the estimation of vertical land movement. In general, vertical velocities from PS Interferometry range between &amp;plusmn;2&amp;thinsp;mm/a and show a homogeneous distribution for coastal areas. Therefore we consider them as stable. We observe subsidence in the area around Groningen and Emden through hydrocarbon extraction. In Wilhelmshaven and Etzel subsidence associated with cavern storage is visible.</p><p>Processed GNSS data and PSI results overlap in time from 2014 to 2016. The integration of the spatial multi-temporal PS results with point-wise GNSS time series data are required, as they form the main input data for the further development of our vertical displacement model of northern Germany.</p>


2021 ◽  
Author(s):  
Irene Calderón-Sanou ◽  
Tamara Münkemüller ◽  
Lucie Zinger ◽  
Heidy Schimann ◽  
Nigel Gilles Yoccoz ◽  
...  

Abstract The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA survey of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g. ectomycorrhizal fungi) while many others profited (e.g. bacterivores, omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.


2020 ◽  
Author(s):  
Britas Klemens Eriksson ◽  
Casey Yanos ◽  
Sarah Bourlat ◽  
Serena Donadi ◽  
Michael C. Fontaine ◽  
...  

AbstractDeclines of large predatory fish due to overexploitation are restructuring food webs across the globe. It is now becoming evident that restoring these altered food webs requires addressing not only ecological processes, but evolutionary ones as well, because human-induced rapid evolution may in turn affect ecological dynamics. In the central Baltic Sea, abundances of the mesopredatory fish, the three-spined stickleback (Gasterosteus aculeatus), have increased dramatically during the past decades. Time-series data covering 22 years show that this increase coincides with a decline in the number of juvenile perch (Perca fluviatilis), the most abundant predator of stickleback along the coast. We studied the interaction between evolutionary and ecological effects of this mesopredator take-over, by surveying the armour plate morphology of stickleback and the structure of the associated food web. First, we investigated the distribution of different stickleback phenotypes depending on predator abundances and benthic production; and described the stomach content of the stickleback phenotypes using metabarcoding. Second, we explored differences in the relation between different trophic levels and benthic production, between bays where the relative abundance of fish was dominated by stickleback or not; and compared this to previous cage-experiments to support causality of detected correlations. We found two distinct lateral armour plate phenotypes of stickleback, incompletely and completely plated. The proportion of incompletely plated individuals increased with increasing benthic production and decreasing abundances of adult perch. Stomach content analyses showed that the completely plated individuals had a stronger preference for invertebrate herbivores (amphipods) than the incompletely plated ones. In addition, predator dominance interacted with ecosystem production to determine food web structure and the propagation of a trophic cascade: with increasing production, biomass accumulated on the first (macroalgae) and third (stickleback) trophic levels in stickleback-dominated bays, but on the second trophic level (invertebrate herbivores) in perch-dominated bays. Since armour plates are defence structures favoured by natural selection in the presence of fish predators, the phenotype distribution suggest that a novel low-predation regime favours sticklebacks with less armour. Our results indicate that an interaction between evolutionary and ecological effects of the stickleback take-over has the potential to affect food web dynamics.


Ecology ◽  
2020 ◽  
Author(s):  
Matthew A. McCary ◽  
Joseph S. Phillips ◽  
Tanjona Ramiadantsoa ◽  
Lucas A. Nell ◽  
Amanda R. McCormick ◽  
...  
Keyword(s):  
Top Down ◽  

Ocean Science ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1363-1379
Author(s):  
Andreas Boesch ◽  
Sylvin Müller-Navarra

Abstract. The harmonic representation of inequalities (HRoI) is a procedure for tidal analysis and prediction that combines aspects of the non-harmonic and the harmonic method. With this technique, the deviations of heights and lunitidal intervals, especially of high and low waters, from their respective mean values are represented by superpositions of long-period tidal constituents. This article documents the preparation of a constituents list for the operational application of the harmonic representation of inequalities. Frequency analyses of observed heights and lunitidal intervals of high and low water from 111 tide gauges along the German North Sea coast and its tidally influenced rivers have been carried out using the generalized Lomb–Scargle periodogram. One comprehensive list of partial tides is realized by combining the separate frequency analyses and by applying subsequent improvements, e.g. through manual inspections of long time series data. The new set of 39 partial tides largely confirms the previously used set with 43 partial tides. Nine constituents are added and 13 partial tides, mostly in the close neighbourhood of strong spectral components, are removed. The effect of these changes has been studied by comparing predictions with observations from 98 tide gauges. Using the new set of constituents, the standard deviations of the residuals are reduced on average by 2.41 % (times) and 2.30 % (heights) for the year 2016. The new set of constituents will be used for tidal analyses and predictions starting with the German tide tables for the year 2020.


Sign in / Sign up

Export Citation Format

Share Document