scholarly journals PfCDPK1 is critical for malaria parasite gametogenesis and mosquito infection

2018 ◽  
Vol 115 (4) ◽  
pp. 774-779 ◽  
Author(s):  
Abhisheka Bansal ◽  
Alvaro Molina-Cruz ◽  
Joseph Brzostowski ◽  
Poching Liu ◽  
Yan Luo ◽  
...  

Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs.

2021 ◽  
Vol 22 (4) ◽  
pp. 1596
Author(s):  
Elsa Ronzier ◽  
Claire Corratgé-Faillie ◽  
Frédéric Sanchez ◽  
Christian Brière ◽  
Tou Cheu Xiong

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


1995 ◽  
Vol 268 (3) ◽  
pp. E391-E396
Author(s):  
H. Ayame ◽  
A. Matsutani ◽  
H. Inoue ◽  
T. Kaneko ◽  
K. Kaku

In previous studies, we demonstrated that tolbutamide inhibits a phosphorylation of hepatic 6-phosphofructo-2-kinase (6PF-2-K)/fructose-2,6-bisphosphatase (Fru-2,6-P2ase) catalyzed by the adenosine 3',5'-cyclic monophosphate-dependent protein kinase in a reconstruction system using the purified enzyme from the rat liver. In the current study, to assess a role of tolbutamide on hepatic 6PF-2-K/Fru-2,6-P2ase physiologically, we used intact rat hepatocytes and examined effects of tolbutamide on a phosphorylation of the bifunctional enzyme in the presence of glucagon. Glucagon induced a rapid phosphorylation of hepatic 6PF-2-K/Fru-2,6-P2ase accompanied by an inhibition of 6PF-2-K activity and a stimulation of Fru-2,6-P2ase activity in a dose-dependent manner. Tolbutamide inhibited glucagon-induced phosphorylation of the bifunctional enzyme protein in a dose-dependent manner. By adding 2 mM tolbutamide, reduced activity of 6PF-2-K and increased activity of Fru-2,6-P2ase in the presence of 10(-9) M glucagon were partially restored. The present results suggest the possibility that tolbutamide modulates the activity of hepatic 6PF-2-K/Fru-2,6-P2ase through inhibiting a phosphorylation of the enzyme protein. The counterregulatory influence of tolbutamide on the effect of glucagon suggests a possible mechanism for the extrapancreatic effect of sulfonylurea drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Yang ◽  
Chen You ◽  
Shaoyu Yang ◽  
Yuping Zhang ◽  
Fan Yang ◽  
...  

Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.


2020 ◽  
Vol 71 (14) ◽  
pp. 4042-4056
Author(s):  
Qing Yang ◽  
Biying Dong ◽  
Litao Wang ◽  
Zhihua Song ◽  
Lili Niu ◽  
...  

Abstract The flowers of okra (Abelmoschus esculentus) open and wilt within only a few hours, and this is accompanied by accumulation of hyperoside, a secondary metabolite in the flavonoid pathway. However, little is known about the relationship between flavonoids and flowering. Here, we found that exogenous application of hyperoside extended the duration of the full-blooming period by more than 3-fold, and this was accompanied by a 14.7-fold increase in the expression of CALCIUM-DEPENDENT PROTEIN KINASE6 (AeCDPK6). Gene expression profiling indicated that the transcription factor AeMYB30 was co-expressed with AeCDPK6, and detailed protein interaction and phosphorylation experiments together with yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated an interaction between AeMYB30 and AeCDPK6. AeCDPK6 specifically phosphorylated AeMYB30S191, leading to increased protein stability and prevention of degradation. Furthermore, AeMYB30 directly bound to the promoter of AeUF3GaT1, a key enzyme in the hyperoside biosynthesis pathway. Analysis of transgenic plants showed that AeCDPK6 was required for the hyperoside-induced phosphorylation of AeMYB30 to enhance its stability and transcriptional activity. Ectopic expression of AeCDPK6 promoted hyperoside accumulation and prolonged the full-blooming period in an AeMYB30-dependent manner. Our results indicate the role of AeCDPK6–AeMYB30 in the molecular mechanism by which hyperoside regulates the period of full blooming in okra, a plant with a short duration of flowering.


2022 ◽  
Author(s):  
Marius Walter ◽  
Irene P Chen ◽  
Albert Vallejo-Gracia ◽  
Ik-Jung Kim ◽  
Olga Bielska ◽  
...  

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 stably interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alecia Biel ◽  
Morgan Moser ◽  
Iris Meier

Abscisic acid (ABA) induces stomatal closure by utilizing complex signaling mechanisms, allowing for sessile plants to respond rapidly to ever-changing environmental conditions. ABA regulates the activity of plasma membrane ion channels and calcium-dependent protein kinases, Ca2+ oscillations, and reactive oxygen species (ROS) concentrations. Throughout ABA-induced stomatal closure, the cytoskeleton undergoes dramatic changes that appear important for efficient closure. However, the precise role of this cytoskeletal reorganization in stomatal closure and the nature of its regulation are unknown. We have recently shown that the plant KASH proteins SINE1 and SINE2 are connected to actin organization during ABA-induced stomatal closure but their role in microtubule (MT) organization remains to be investigated. We show here that depolymerizing MTs using oryzalin can restore ABA-induced stomatal closure deficits in sine1-1 and sine2-1 mutants. GFP-MAP4-visualized MT organization is compromised in sine1-1 and sine2-1 mutants during ABA-induced stomatal closure. Loss of SINE1 or SINE2 results in loss of radially organized MT patterning in open guard cells, aberrant MT organization during stomatal closure, and an overall decrease in the number of MT filaments or bundles. Thus, SINE1 and SINE2 are necessary for establishing MT patterning and mediating changes in MT rearrangement, which is required for ABA-induced stomatal closure.


Sign in / Sign up

Export Citation Format

Share Document