scholarly journals DSCAM promotes self-avoidance in the developing mouse retina by masking the functions of cadherin superfamily members

2018 ◽  
Vol 115 (43) ◽  
pp. E10216-E10224 ◽  
Author(s):  
Andrew M. Garrett ◽  
Andre Khalil ◽  
David O. Walton ◽  
Robert W. Burgess

During neural development, self-avoidance ensures that a neuron’s processes arborize to evenly fill a particular spatial domain. At the individual cell level, self-avoidance is promoted by genes encoding cell-surface molecules capable of generating thousands of diverse isoforms, such as Dscam1 (Down syndrome cell adhesion molecule 1) in Drosophila. Isoform choice differs between neighboring cells, allowing neurons to distinguish “self” from “nonself”. In the mouse retina, Dscam promotes self-avoidance at the level of cell types, but without extreme isoform diversity. Therefore, we hypothesize that DSCAM is a general self-avoidance cue that “masks” other cell type-specific adhesion systems to prevent overly exuberant adhesion. Here, we provide in vivo and in vitro evidence that DSCAM masks the functions of members of the cadherin superfamily, supporting this hypothesis. Thus, unlike the isoform-rich molecules tasked with self-avoidance at the individual cell level, here the diversity resides on the adhesive side, positioning DSCAM as a generalized modulator of cell adhesion during neural development.

1981 ◽  
Vol 34 (3) ◽  
pp. 249 ◽  
Author(s):  
Kenneth P McNatty

This review summarizes recent studies pertaining to follicular development in the human ovary. Some of these studies were concerned with characterizing the steroidogenic capacity of the individual cell types of the follicle in relation to whether the follicle was healthy or atretic. Other studies covered in this review concern the oocyte and its hormonal environment both in vivo and in vitro, the effects of steroids and gonadotrophins on the steroidogenic potentials of follicle cells and also some endocrine and non-endocrine responses of thecal and granulosa cells after being separated and then recombined in vitro. The data are integrated in relation to the development of a follicle during the follicular phase of the menstrual cycle.


Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 105-122 ◽  
Author(s):  
Marysia Placzek ◽  
Toshiya Yamada ◽  
Marc Tessier-Lavigne ◽  
Thomas Jessell ◽  
Jane Dodd

Distinct classes of neural cells differentiate at specific locations within the embryonic vertebrate nervous system. To define the cellular mechanisms that control the identity and pattern of neural cells we have used a combination of functional assays and antigenic markers to examine the differentiation of cells in the developing spinal cord and hindbrain in vivo and in vitro. Our results suggest that a critical step in the dorsoventral patterning of the embryonic CNS is the differentiation of a specialized group of midline neural cells, termed the floor plate, in response to local inductive signals from the underlying notochord. The floor plate and notochord appear to control the pattern of cell types that appear along the dorsoventral axis of the neural tube. The fate of neuroepithelial cells in the ventral neural tube may be defined by cell position with respect to the ventral midline and controlled by polarizing signals that originate from the floor plate and notochord.


1992 ◽  
Vol 118 (4) ◽  
pp. 841-858 ◽  
Author(s):  
M F Pittenger ◽  
D M Helfman

Most cell types express several tropomyosin isoforms, the individual functions of which are poorly understood. In rat fibroblasts there are at least six isoforms; TM-1, TM-2, TM-3, TM-4, TM-5a, and TM-5b. TM-1 is the product of the beta gene. TM-4 is produced from the TM-4 gene, and TMs 2, 3, 5a, and 5b are the products of the alpha gene. To begin to study the localization and function of the isoforms in fibroblasts, cDNAs for TM isoforms 2, 3, 5a, and 5b were placed into bacterial expression vectors and used to produce TM isoforms. The bacterially produced TMs were determined to be full length by sequencing the amino- and carboxy termini. These TMs were found to bind to F-actin in vitro, with properties similar to that of skeletal muscle TM. In addition, competition experiments demonstrated that TM-5b was better than TM-5a in displacing other TM isoforms from F-actin in vitro. To investigate the intracellular localization of these fibroblast isoforms, each was derivatized with a fluorescent chromophore and microinjected into rat fibroblasts. TM-2, TM-3, TM-5a, and TM-5b were each found to associate along actin filaments. There was no preferred cellular location or subset of actin filaments for these isoforms. Furthermore, co-injection of two isoforms labeled with different fluorochromes showed identical staining. At the level of the light microscope, these isoforms from the alpha gene do not appear to achieve different functions by binding to particular subsets of actin filaments or locations in cells. Some alternative possibilities are discussed. The results show that bacterially produced TMs can be used to study in vitro and in vivo properties of the isoforms.


2018 ◽  
Author(s):  
Josephine Jüttner ◽  
Arnold Szabo ◽  
Brigitte Gross-Scherf ◽  
Rei K. Morikawa ◽  
Santiago B. Rompani ◽  
...  

SummaryTargeting genes to specific neuronal or glial cell types is valuable both for understanding and for repairing brain circuits. Adeno-associated viral vectors (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is a challenge. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that ~11% of these AAVs specifically target expression to neuronal and glial cell types in the mouse retina, mouse brain, non-human primate retinain vivo, and in the human retinain vitro. We demonstrate applications for recording, stimulation, and molecular characterization, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast, and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


2010 ◽  
Vol 191 (5) ◽  
pp. 1029-1041 ◽  
Author(s):  
Sayantanee Biswas ◽  
Michelle R. Emond ◽  
James D. Jontes

The protocadherins comprise the largest subgroup within the cadherin superfamily, yet their cellular and developmental functions are not well understood. In this study, we demonstrate that pcdh19 (protocadherin 19) acts synergistically with n-cadherin (ncad) during anterior neurulation in zebrafish. In addition, Pcdh19 and Ncad interact directly, forming a protein–protein complex both in vitro and in vivo. Although both molecules are required for calcium-dependent adhesion in a zebrafish cell line, the extracellular domain of Pcdh19 does not exhibit adhesive activity, suggesting that the involvement of Pcdh19 in cell adhesion is indirect. Quantitative analysis of in vivo two-photon time-lapse image sequences reveals that loss of either pcdh19 or ncad impairs cell movements during neurulation, disrupting both the directedness of cell movements and the coherence of movements among neighboring cells. Our results suggest that Pcdh19 and Ncad function together to regulate cell adhesion and to mediate morphogenetic movements during brain development.


2005 ◽  
Vol 14 (6) ◽  
pp. 339-351 ◽  
Author(s):  
R. Stewart ◽  
M. Lako ◽  
G. M. Horrocks ◽  
S. A. Przyborski

For many years, researchers have investigated the fate and potential of neuroectodermal cells during the development of the central nervous system. Although several key factors that regulate neural differentiation have been identified, much remains unknown about the molecular mechanisms that control the fate and specification of neural subtypes, especially in humans. Human embryonal carcinoma (EC) stem cells are valuable research tools for the study of neural development; however, existing in vitro experiments are limited to inducing the differentiation of EC cells into only a handful of cell types. In this study, we developed and characterized a novel EC cell line (termed TERA2.cl.SP12-GFP) that carries the reporter molecule, green fluorescent protein (GFP). We demonstrate that TERA2.cl.SP12-GFP stem cells and their differentiated neural derivatives constitutively express GFP in cells grown both in vitro and in vivo. Cellular differentiation does not appear to be affected by insertion of the transgene. We propose that TERA2.cl.SP12-GFP cells provide a valuable research tool to track the fate of cells subsequent to transplantation into alternative environments and that this approach may be particularly useful to investigate the differentiation of human neural tissues in response to local environmental signals.


1997 ◽  
Vol 139 (3) ◽  
pp. 759-771 ◽  
Author(s):  
Claudio Brancolini ◽  
Dean Lazarevic ◽  
Joe Rodriguez ◽  
Claudio Schneider

Cell death by apoptosis is a tightly regulated process that requires coordinated modification in cellular architecture. The caspase protease family has been shown to play a key role in apoptosis. Here we report that specific and ordered changes in the actin cytoskeleton take place during apoptosis. In this context, we have dissected one of the first hallmarks in cell death, represented by the severing of contacts among neighboring cells. More specifically, we provide demonstration for the mechanism that could contribute to the disassembly of cytoskeletal organization at cell–cell adhesion. In fact, β-catenin, a known regulator of cell–cell adhesion, is proteolytically processed in different cell types after induction of apoptosis. Caspase-3 (cpp32/apopain/yama) cleaves in vitro translated β-catenin into a form which is similar in size to that observed in cells undergoing apoptosis. β-Catenin cleavage, during apoptosis in vivo and after caspase-3 treatment in vitro, removes the amino- and carboxy-terminal regions of the protein. The resulting β-catenin product is unable to bind α-catenin that is responsible for actin filament binding and organization. This evidence indicates that connection with actin filaments organized at cell–cell contacts could be dismantled during apoptosis. Our observations suggest that caspases orchestrate the specific and sequential changes in the actin cytoskeleton occurring during cell death via cleavage of different regulators of the microfilament system.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4790-4790
Author(s):  
Michelle Tsai ◽  
Thomas P. Hunt ◽  
Daniel A. Fletcher ◽  
Wilbur Aaron Lam

Abstract Vaso-occlusion in sickle cell disease is fundamentally biophysical in nature, involving a complex set of cellular interactions. Originally attributed solely to the entrapment of abnormally rigid sickle red cells (RBCs) in the microcirculation, this process is now known to involve the decreased deformability of white blood cells (WBCs) and increased endothelial adhesion to different cell types (sickle RBCs, reticulocytes, WBCs, platelets). These biophysical interactions, which are also mediated biochemically by a variety of soluble factors (coagulation proteins, inflammatory mediators, reactive oxygen species, free hemoglobin, etc.), then ultimately lead to microvascular obstruction. However, in vitro experimental approaches that measure the vaso-occlusive properties of sickle blood cells have been unable to separate the contributions of decreased cell deformability and cell-cell adhesion in a single assay. Historically, cell deformability is measured using techniques such as micropipette aspiration, micropore filtration, and ektacytometry, whereas adhesive interactions between the endothelium, blood cells, and soluble factors are assessed using endothelial-lined flow chamber assays. No existing technique effectively evaluates both cell deformability and cell adhesion simultaneously, which is required to comprehensively study sickle cell vaso-occlusion. In the current study, we present an “endothelialized” microfluidic system that simultaneously integrates cell deformability and cell adhesion under physiologic microvascular flow conditions to investigate the underlying biophysical mechanisms of sickle cell vaso-occlusion. Briefly, a layer of human umbilical vein endothelial cells (HUVECs) was cultured along the inner walls of microfabricated microchannels made of the biocompatible and optically transparent polymer polydimethylsiloxane, or PDMS (Figure). Standard lab-on-chip photolithography techniques were utilized to design and create the microchannels, which geometrically emulate a branching microvasculature network with the smallest lumen size approximately 15 μm in diameter. Then, the inner lining of the microchannels were coated with fibronectin and seeded with HUVECs, which grew to a confluent monolayer within 4–5 days and encompassed the entire inner surface in all three dimensions. Whole blood or cell suspensions can then be perfused into the system, and cells can be visualized under flow using standard immunofluorescence microscopy techniques, which allows for identification of specific cellular subpopulations. Pressure and flow rate can be tightly controlled, and cell transit time, time to cell aggregation or obstruction of the system can be recorded using automated image processing software. The effect of different cell types and biologic modifiers (i.e. cytokines, coagulation factors, etc) on in vitro vaso-occlusion can be systematically analyzed and quantified. Furthermore, adhesion-blocking antibodies and drugs that increase cell deformability can be used to quantify the vaso-occlusive effect of adhesion versus cell rigidity. As this system physically constrains cells three-dimensionally in lumens the size of the human microvasculature, physical cellular interactions that are likely to occur in vivo and the endothelial cell response to these processes can also be directly evaluated with live cell fluorescence, immunofluorescence or western blotting. Overall, this system will provide a quantitative and controlled approach to investigate the underlying complex biophysical processes that govern sickle cell vaso-occlusion. In addition, this platform will also serve as a useful complimentary technology to in vivo experiments using sickle cell mouse models. Figure Figure


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document