scholarly journals Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346

2019 ◽  
Vol 116 (11) ◽  
pp. 4963-4972 ◽  
Author(s):  
Igor Dikiy ◽  
Uthama R. Edupuganti ◽  
Rinat R. Abzalimov ◽  
Peter P. Borbat ◽  
Madhur Srivastava ◽  
...  

Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.

2005 ◽  
Vol 390 (3) ◽  
pp. 769-776 ◽  
Author(s):  
Sarah Sanowar ◽  
Hervé Le Moual

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQHis, a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQHis was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQHis was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQHis exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQHis was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQHis to PhoP. Reconstituted PhoQHis catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


2016 ◽  
Author(s):  
Nathan D. Thomsen ◽  
Michael R. Lawson ◽  
Lea B. Witkowsky ◽  
Song Qu ◽  
James M. Berger

ABSTRACTRing-shaped hexameric helicases and translocases support essential DNA, RNA, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the E. coli Rho transcription termination factor as a model system, we have employed solution and crystallographic structural methods to delineate the range of conformational changes that accompany distinct substrate and nucleotide cofactor binding events. SAXS data show that Rho preferentially adopts an open-ring state in solution, and that RNA and ATP are both required to cooperatively promote ring closure. Multiple closed-ring structures with different RNA substrates and nucleotide occupancies capture distinct catalytic intermediates accessed during translocation. Our data reveal how RNA-induced ring closure templates a sequential ATP-hydrolysis mechanism, provide a molecular rationale for how the Rho ATPase domains distinguishes between distinct RNA sequences, and establish the first structural snapshots of substepping events in a hexameric helicase/translocase.SIGNIFICANCEHexameric, ring-shaped translocases are molecular motors that convert the chemical energy of ATP hydrolysis into the physical movement of protein and nucleic acid substrates. Structural studies of several distinct hexameric translocases have provided insights into how substrates are loaded and translocated; however, the range of structural changes required for coupling ATP turnover to a full cycle of substrate loading and translocation has not been visualized for any one system. Here, we combine low-and high-resolution structural studies of the Rho helicase, defining for the first time the ensemble of conformational transitions required both for substrate loading in solution and for substrate movement by a processive hexameric translocase.


2018 ◽  
Vol 56 (1) ◽  
pp. 41-66 ◽  
Author(s):  
Gwyn A. Beattie ◽  
Bridget M. Hatfield ◽  
Haili Dong ◽  
Regina S. McGrane

Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.


2020 ◽  
Author(s):  
Irene Maffucci ◽  
Damien Laage ◽  
Guillaume Stirnemann ◽  
Fabio Sterpone

A key aspect of life's evolution on Earth is the adaptation of proteins to be stable and work in a very wide range of temperature conditions. A detailed understanding of the associated molecular mechanisms would also help to design enzymes optimized for biotechnological processes. Despite important advances, a comprehensive picture of how thermophilic enzymes succeed in functioning under extreme temperatures remains incomplete. Here, we examine the temperature dependence of stability and of flexibility in the mesophilic monomeric Escherichia coli (Ec) and thermophilic dimeric Thermotoga maritima (Tm) homologs of the paradigm dihydrofolate reductase (DHFR) enzyme. We use all-atom molecular dynamics simulations and a replica-exchange scheme that allows to enhance the conformational sampling while providing at the same time a detailed understanding of the enzymes' behavior at increasing temperatures. We show that this approach reproduces the stability shift between the two homologs, and provides a molecular description of the denaturation mechanism by identifying the sequence of secondary structure elements melting as temperature increases, which is not straightforwardly obtained in the experiments. By repeating our approach on the hypothetical TmDHFR monomer, we further determine the respective effects of sequence and oligomerization in the exceptional stability of TmDFHR. We show that the intuitive expectation that protein flexibility and thermal stability are correlated is not verified. Finally, our simulations reveal that significant conformational fluctuations already take place much below the melting temperature. While the difference between the TmDHFR and EcDHFR catalytic activities is often interpreted via a simplified two-state picture involving the open and closed conformations of the key M20 loop, our simulations suggest that the two homologs' markedly different activity temperature dependences are caused by changes in the ligand-cofactor distance distributions in response to these conformational changes.


2020 ◽  
Vol 7 ◽  
Author(s):  
Thinh-Phat Cao ◽  
Hyojeong Yi ◽  
Immanuel Dhanasingh ◽  
Suparna Ghosh ◽  
Jin Myung Choi ◽  
...  

Despite class A ESBLs carrying substitutions outside catalytic regions, such as Cys69Tyr or Asn136Asp, have emerged as new clinical threats, the molecular mechanisms underlying their acquired antibiotics-hydrolytic activity remains unclear. We discovered that this non-catalytic-region (NCR) mutations induce significant dislocation of β3-β4 strands, conformational changes in critical residues associated with ligand binding to the lid domain, dynamic fluctuation of Ω-loop and β3-β4 elements. Such structural changes increase catalytic regions’ flexibility, enlarge active site, and thereby accommodate third-generation cephalosporin antibiotics, ceftazidime (CAZ). Notably, the electrostatic property around the oxyanion hole of Cys69Tyr ESBL is significantly changed, resulting in possible additional stabilization of the acyl-enzyme intermediate. Interestingly, the NCR mutations are as effective for antibiotic resistance by altering the structure and dynamics in regions mediating substrate recognition and binding as single amino-acid substitutions in the catalytic region of the canonical ESBLs. We believe that our findings are crucial in developing successful therapeutic strategies against diverse class A ESBLs, including the new NCR-ESBLs.


Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 772-779 ◽  
Author(s):  
Rashmi Shrivastava ◽  
Ananta Kumar Ghosh ◽  
Amit Kumar Das

Two-component signal transduction pathways comprising a histidine kinase and its cognate response regulator play a dominant role in the adaptation of Mycobacterium tuberculosis to its host, and its virulence, pathogenicity and latency. Autophosphorylation occurs at a conserved histidine of the histidine kinase and subsequently the phosphoryl group is transferred to the conserved aspartate of its cognate response regulator. Among the twelve two-component systems of M. tuberculosis, Rv0600c (HK1), Rv0601c (HK2) and Rv0602c (TcrA) are annotated as a unique three-protein two-component system. HK1 contains an ATP-binding domain, and HK2, a novel Hpt mono-domain protein, contains the conserved phosphorylable histidine residue. HK1 and HK2 complement each other's functions. Interactions among different domains of the HK1, HK2 and TcrA proteins were studied using a yeast two-hybrid system. Self-interaction was observed for HK2 but not for HK1 or TcrA. HK2 was found to interact reasonably well with both HK1 and TcrA, but HK1 interacted weakly with TcrA. The conserved aspartate-containing receiver domain of TcrA interacted well with HK2 but not with HK1. These results suggest the existence of a novel signalling mechanism amongst HK1–HK2–TcrA, and a model for this mechanism is proposed.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Matthew M. Schaefers

ABSTRACT The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei. Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.


2011 ◽  
Vol 10 (12) ◽  
pp. 1733-1739 ◽  
Author(s):  
Carlos Barba-Ostria ◽  
Fernando Lledías ◽  
Dimitris Georgellis

ABSTRACT Two-component signaling pathways based on phosphoryl group transfer between histidine kinase and response regulator proteins regulate environmental responses in bacteria, archaea, plants, slime molds, and fungi. Here we characterize a mutant form of DCC-1, a putative histidine kinase encoded by the NCU00939 gene of the filamentous fungus Neurospora crassa . We show that this protein participates in the regulation of processes such as conidiation, perithecial development, and, to a certain degree, carotenogenesis. Furthermore, DCC-1 is suggested to exert its effect by promoting cyclic AMP production, thereby placing this protein within the context of a signaling pathway.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Liang Wu ◽  
Regina S. McGrane ◽  
Gwyn A. Beattie

ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. IMPORTANCE Photosensory proteins enable organisms to perceive and respond to light. The biological and ecological roles of these proteins in nonphotosynthetic bacteria are largely unknown. This study discovered that a blue-light-sensing LOV (light, oxygen, or voltage) protein and a red/far-red-light-sensing bacteriophytochrome both regulate swarming motility in the foliar pathogen Pseudomonas syringae. These proteins form an integrated signaling network in which the bacteriophytochrome represses swarming motility in response to red, far-red, and blue light, and LOV positively regulates swarming motility by suppressing bacteriophytochrome-mediated blue-light signaling. This is the first example of cross talk between LOV and phytochrome signaling pathways in bacteria, which shows unexpected similarity to photoreceptor signaling in plants.


Sign in / Sign up

Export Citation Format

Share Document