scholarly journals Interrelationships between structure and function during the hemostatic response to injury

2019 ◽  
Vol 116 (6) ◽  
pp. 2243-2252 ◽  
Author(s):  
Maurizio Tomaiuolo ◽  
Chelsea N. Matzko ◽  
Izmarie Poventud-Fuentes ◽  
John W. Weisel ◽  
Lawrence F. Brass ◽  
...  

Extensive studies have detailed the molecular regulation of individual components of the hemostatic system, including platelets, coagulation factors, and regulatory proteins. Questions remain, however, about how these elements are integrated at the systems level within a rapidly changing physical environment. To answer some of these questions, we developed a puncture injury model in mouse jugular veins that combines high-resolution, multimodal imaging with functional readouts in vivo. The results reveal striking spatial regulation of platelet activation and fibrin formation that could not be inferred from studies performed ex vivo. As in the microcirculation, where previous studies have been performed, gradients of platelet activation are readily apparent, as is an asymmetrical distribution of fibrin deposition and thrombin activity. Both are oriented from the outer to the inner surface of the damaged vessel wall, with a greater extent of platelet activation and fibrin accumulation on the outside than the inside. Further, we show that the importance of P2Y12signaling in establishing a competent hemostatic plug is related to the size of the injury, thus limiting its contribution to hemostasis to specific physiologic contexts. Taken together, these studies offer insights into the organization of hemostatic plugs, provide a detailed understanding of the adverse bleeding associated with a widely prescribed class of antiplatelet agents, and highlight differences between hemostasis and thrombosis that may suggest alternative therapeutic approaches.

2020 ◽  
Vol 12 (553) ◽  
pp. eaar8430 ◽  
Author(s):  
Maria V. Selvadurai ◽  
Mitchell J. Moon ◽  
Simon J. Mountford ◽  
Xiao Ma ◽  
Zhaohua Zheng ◽  
...  

Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Iberia R Sosa ◽  
Irene Zagol-Ikapitte ◽  
Manju Bala ◽  
Olivier Boutaud ◽  
John Oates

In vivo platelet activation is associated with several pathologic entities, including acute coronary syndrome, essential thrombocythemia, anti-phospholipid antibody syndrome, diabetes and metabolic syndrome. The need for more robust biomarkers with which to assess platelet activation in vivo in human diseases is well recognized. Our lab has developed two novel assays to study in vivo platelet activation and rate of turnover. During platelet activation, malondialdehyde (MDA) is produced by the thromboxane synthase in amounts equimolar to thromboxane A2 and also non-enzymatically by lipid peroxidation resulting from the oxidative processes that accompany activation. MDA is a reactive dicarbonyl that reacts with amines, notably lysines on proteins, yielding covalent modifications of the proteins that then accumulate over the lifetime of the platelet. We developed an LC/MS/MS method for quantification of the most stable of three MDA adducts, the dilysyl-MDA crosslink, employing a [13C12] labeled internal standard. We found that activation of platelets with arachidonic acid leads to an increase in the levels of dilysyl-MDA crosslinks in platelets, which is inhibited by the thromboxane synthase inhibitor, ozagrel, by the cyclooxygenase inhibitor, aspirin, and by scavengers of reactive carbonyls, 3- methoxysalicylamine and Salicylamine. High platelet turnover has been associated with increased risk for thrombosis and failure of antiplatelet agents. We propose a novel approach to studying platelet turnover by labeling platelets in vivo by oral administration of aspirin containing a deuterium labeled acetyl group (d3-aspirin). We can measure the clearance of d3-labeled platelets by using LC/MS/MS to measure the tryptic peptide (SLK) of COX-1 labeled with d3. This approach avoids exposure to radioactivity and the artifact resulting from manipulation of platelets labeled ex vivo. The results of this study provide two novel assays with the potential to serve as markers of in vivo platelet activation and turnover, which may be useful in predicting thrombotic risk and efficacy of antiplatelet therapy in patients with medical conditions associated with platelet hyperactivity and high rate of platelet turnover.


2022 ◽  
Author(s):  
Homa Majd ◽  
Ryan M Samuel ◽  
Jonathan T Ramirez ◽  
Ali Kalantari ◽  
Kevin Barber ◽  
...  

The enteric nervous system (ENS) plays a central role in gut physiology and mediating the crosstalk between the gastrointestinal (GI) tract and other organs. The human ENS has remained elusive, highlighting the need for an in vitro modeling and mapping blueprint. Here we map out the developmental and functional features of the human ENS, by establishing robust and scalable 2D ENS cultures and 3D enteric ganglioids from human pluripotent stem cells (hPSCs). These models recapitulate the remarkable neuronal and glial diversity found in primary tissue and enable comprehensive molecular analyses that uncover functional and developmental relationships within these lineages. As a salient example of the power of this system, we performed in-depth characterization of enteric nitrergic neurons (NO neurons) which are implicated in a wide range of GI motility disorders. We conducted an unbiased screen and identified drug candidates that modulate the activity of NO neurons and demonstrated their potential in promoting motility in mouse colonic tissue ex vivo. We established a high-throughput strategy to define the developmental programs involved in NO neuron specification and discovered that PDGFR inhibition boosts the induction of NO neurons in enteric ganglioids. Transplantation of these ganglioids in the colon of NO neuron-deficient mice results in extensive tissue engraftment, providing a xenograft model for the study of human ENS in vivo and the development of cell-based therapies for neurodegenerative GI disorders. These studies provide a framework for deciphering fundamental features of the human ENS and designing effective strategies to treat enteric neuropathies.  


2019 ◽  
Vol 317 (6) ◽  
pp. C1205-C1212 ◽  
Author(s):  
Anoop Kumar ◽  
Dulari Jayawardena ◽  
Arivarasu N. Anbazhagan ◽  
Ishita Chatterjee ◽  
Shubha Priyamvada ◽  
...  

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl−/[Formula: see text] exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl−/[Formula: see text] exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


2016 ◽  
Vol 310 (1) ◽  
pp. H71-H79 ◽  
Author(s):  
Maggie M. Kuo ◽  
Dae Hee Kim ◽  
Sandeep Jandu ◽  
Yehudit Bergman ◽  
Siqi Tan ◽  
...  

Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in the vasculature. In this study, we tested the hypothesis that H2S contributes to coronary vasoregulation and evaluated the physiological relevance of two sources of H2S, namely, cystathionine-γ-lyase (CSE) and 3-mercaptypyruvate sulfertransferase (MPST). MPST was detected in human coronary artery endothelial cells as well as rat and mouse coronary artery; CSE was not detected in the coronary vasculature. Rat coronary artery homogenates produced H2S through the MPST pathway but not the CSE pathway in vitro. In vivo coronary vasorelaxation response was similar in CSE knockout mice, wild-type mice (WT), and WT mice treated with the CSE inhibitor propargylglycine, suggesting that CSE-produced H2S does not have a significant role in coronary vasoregulation in vivo. Ex vivo, the MPST substrate 3-mercaptopyruvate (3-MP) and H2S donor sodium hydrosulfide (NaHS) elicited similar coronary vasoreactivity responses. Pyruvate did not have any effects on vasoreactivity. The vasoactive effect of H2S appeared to be nitric oxide (NO) dependent: H2S induced coronary vasoconstriction in the presence of NO and vasorelaxation in its absence. Maximal endothelial-dependent relaxation was intact after 3-MP and NaHS induced an increase in preconstriction tone, suggesting that endothelial NO synthase activity was not significantly inhibited. In vitro, H2S reacted with NO, which may, in part explain the vasoconstrictive effects of 3-MP and NaHS. Taken together, these data show that MPST rather than CSE generates H2S in coronary artery, mediating its effects through direct modulation of NO. This has important implications for H2S-based therapy in healthy and diseased coronary arteries.


2007 ◽  
Vol 204 (13) ◽  
pp. 3103-3111 ◽  
Author(s):  
Brian G. Petrich ◽  
Patrizia Marchese ◽  
Zaverio M. Ruggeri ◽  
Saskia Spiess ◽  
Rachel A.M. Weichert ◽  
...  

Integrins are critical for hemostasis and thrombosis because they mediate both platelet adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central organizer of focal adhesions, and loss of talin phenocopies integrin deletion in Drosophila. Here, we have examined the role of talin in mammalian integrin function in vivo by selectively disrupting the talin1 gene in mouse platelet precursor megakaryocytes. Talin null megakaryocytes produced circulating platelets that exhibited normal morphology yet manifested profoundly impaired hemostatic function. Specifically, platelet-specific deletion of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro studies revealed that loss of talin1 resulted in dramatically impaired integrin αIIbβ3-mediated platelet aggregation and β1 integrin–mediated platelet adhesion. Furthermore, loss of talin1 strongly inhibited the activation of platelet β1 and β3 integrins in response to platelet agonists. These data establish that platelet talin plays a crucial role in hemostasis and provide the first proof that talin is required for the activation and function of mammalian α2β1 and αIIbβ3 integrins in vivo.


2018 ◽  
Vol 27 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mehmet H. Kural ◽  
Guohao Dai ◽  
Laura E. Niklason ◽  
Liqiong Gui

Objective: Invasive coronary interventions can fail due to intimal hyperplasia and restenosis. Endothelial cell (EC) seeding to the vessel lumen, accelerating re-endothelialization, or local release of mTOR pathway inhibitors have helped reduce intimal hyperplasia after vessel injury. While animal models are powerful tools, they are complex and expensive, and not always reflective of human physiology. Therefore, we developed an in vitro 3D vascular model validating previous in vivo animal models and utilizing isolated human arteries to study vascular remodeling after injury. Approach: We utilized a bioreactor that enables the control of intramural pressure and shear stress in vessel conduits to investigate the vascular response in both rat and human arteries to intraluminal injury. Results: Culturing rat aorta segments in vitro, we show that vigorous removal of luminal ECs results in vessel injury, causing medial proliferation by Day-4 and neointima formation, with the observation of SCA1+ cells (stem cell antigen-1) in the intima by Day-7, in the absence of flow. Conversely, when endothelial-denuded rat aortae and human umbilical arteries were subjected to arterial shear stress, pre-seeding with human umbilical ECs decreased the number and proliferation of smooth muscle cell (SMC) significantly in the media of both rat and human vessels. Conclusion: Our bioreactor system provides a novel platform for correlating ex vivo findings with vascular outcomes in vivo. The present in vitro human arterial injury model can be helpful in the study of EC-SMC interactions and vascular remodeling, by allowing for the separation of mechanical, cellular, and soluble factors.


2019 ◽  
Vol 29 ◽  
pp. S160-S161
Author(s):  
P. Mantuano ◽  
A. Mele ◽  
O. Cappellari ◽  
A. Fonzino ◽  
F. Sanarica ◽  
...  
Keyword(s):  
Ex Vivo ◽  
Mdx Mice ◽  

2019 ◽  
Vol 65 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Marcin Ożarowski ◽  
Radosław Kujawski ◽  
Przemysław Ł. Mikołajczak ◽  
Karolina Wielgus ◽  
Andrzej Klejewski ◽  
...  

Summary Flavonoids and their conjugates are the most important group of natural chemical compounds in drug discovery and development. The search for pharmacological activity and new mechanisms of activity of these chemical compounds, which may inhibit mediators of inflammation and influence the structure and function of endothelial cells, can be an interesting pharmacological strategy for the prevention and adjunctive treatments of hypertension, especially induced by pregnancy. Because cardiovascular diseases have multi-factorial pathogenesis these natural chemical compounds with wide spectrum of biological activities are the most interesting source of new drugs. Extracts from one of the most popular plant used in Traditional Chinese Medicine, Scutellaria baicalensis Georgi could be a very interesting source of flavonoids because of its exact content in quercetin, apigenin, chrysin and scutellarin as well as in baicalin. These flavonoids exert vasoprotective properties and many activities such as: anti-oxidative via several pathways, anti-in-flammatory, anti-ischaemic, cardioprotective and anti-hypertensive. However, there is lack of summaries of results of studies in context of potential and future application of flavonoids with determined composition and activity. Our review aims to provide a literature survey of in vitro, in vivo and ex vivo pharmacological studies of selected flavonoids (apigenin, chrysin and scutellarin, baicalin) in various models of hypertension carried out in 2008–2018.


Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 387-396 ◽  
Author(s):  
Lawrence Brass

Abstract The contribution of platelets to normal hemostasis and vascular disease is well described. However, recent studies make it clear that much remains to be learned about platelet activation at the single cell and the molecular level, and about the contribution of platelets to inflammation, tumor angiogenesis, and embryonic development. This article is divided into two themes. The first is an overview of current knowledge of the mechanisms that drive platelet function in vivo and a brief summary of some of the emerging ideas that are modifying older views. The second theme is a consideration of the strengths and weaknesses of the tools we have as hematologists to assess platelet function in the clinical setting, identify mechanisms, and evaluate the impact of antiplatelet agents.


Sign in / Sign up

Export Citation Format

Share Document