The regulation of the DNA damage response at telomeres: focus on kinases

Author(s):  
Michela Galli ◽  
Chiara Frigerio ◽  
Maria Pia Longhese ◽  
Michela Clerici

The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.

2019 ◽  
Vol 116 (39) ◽  
pp. 19464-19473 ◽  
Author(s):  
Stella Pappa ◽  
Natalia Padilla ◽  
Simona Iacobucci ◽  
Marta Vicioso ◽  
Elena Álvarez de la Campa ◽  
...  

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pan Wang ◽  
Sheng Gong ◽  
Jinyu Pan ◽  
Junwei Wang ◽  
Dewei Zou ◽  
...  

AbstractThere exists a consensus that combining hyperbaric oxygen (HBO) and chemotherapy promotes chemotherapy sensitivity in GBM cells. However, few studies have explored the mechanism involved. HIF1α and HIF2α are the two main molecules that contribute to GBM malignant progression by inhibiting apoptosis or maintaining stemness under hypoxic conditions. Moreover, Sox2, a marker of stemness, also contributes to GBM malignant progression through stemness maintenance or cell cycle arrest. Briefly, HIF1α, HIF2α and Sox2 are highly expressed under hypoxia and contribute to GBM growth and chemoresistance. However, after exposure to HBO for GBM, whether the expression of the above factors is decreased, resulting in chemosensitization, remains unknown. Therefore, we performed a series of studies and determined that the expression of HIF1α, HIF2α and Sox2 was decreased after HBO and that HBO promoted GBM cell proliferation through cell cycle progression, albeit with a decrease in stemness, thus contributing to chemosensitization via the inhibition of HIF1α/HIF2α-Sox2.


2010 ◽  
Vol 84 (24) ◽  
pp. 12832-12840 ◽  
Author(s):  
Yuan He ◽  
Ke Xu ◽  
Bjoern Keiner ◽  
Jianfang Zhou ◽  
Volker Czudai ◽  
...  

ABSTRACT Many viruses interact with the host cell division cycle to favor their own growth. In this study, we examined the ability of influenza A virus to manipulate cell cycle progression. Our results show that influenza A virus A/WSN/33 (H1N1) replication results in G0/G1-phase accumulation of infected cells and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Consistent with the G0/G1-phase accumulation, the amount of hyperphosphorylated retinoblastoma protein, a necessary active form for cell cycle progression through late G1 into S phase, decreased after infection with A/WSN/33 (H1N1) virus. In addition, other key molecules in the regulation of the cell cycle, such as p21, cyclin E, and cyclin D1, were also changed and showed a pattern of G0/G1-phase cell cycle arrest. It is interesting that increased viral protein expression and progeny virus production in cells synchronized in the G0/G1 phase were observed compared to those in either unsynchronized cells or cells synchronized in the G2/M phase. G0/G1-phase cell cycle arrest is likely a common strategy, since the effect was also observed in other strains, such as H3N2, H9N2, PR8 H1N1, and pandemic swine H1N1 viruses. These findings, in all, suggest that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G0/G1-phase cell cycle arrest in infected cells.


2012 ◽  
Vol 80 (4) ◽  
pp. 1467-1478 ◽  
Author(s):  
Carolina Coelho ◽  
Lydia Tesfa ◽  
Jinghang Zhang ◽  
Johanna Rivera ◽  
Teresa Gonçalves ◽  
...  

ABSTRACTWe investigated the outcome of the interaction ofCryptococcus neoformanswith murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis ofC. neoformanspromoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis ofC. neoformanspromoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellularC. neoformansresidence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replicationin vivoand demonstrated that these cells are capable of low levels of cell division in the presence or absence ofC. neoformansinfection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect ofC. neoformansinfection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferationin vivo.


2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is one of the common features of human cancer cells, however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest induction in breast cancer.Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and the significant association with patient survival. Quantitative real-time PCR and western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assay, flow cytometry, and in vivo study were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA-sequencing was applied to identify the differential genes and pathways regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1.Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse free survival of patients with breast cancer. Roquin1 overexpression inhibited breast cancer cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted breast cancer cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizing cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2) through targeting the stem–loop structure in the 3’untranslated region (3’UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs.Conclusions: Our findings demonstrated that Roquin1 was a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might as a potential molecular target for breast cancer treatment.


2002 ◽  
Vol 76 (2) ◽  
pp. 619-632 ◽  
Author(s):  
Don X. Nguyen ◽  
Thomas F. Westbrook ◽  
Dennis J. McCance

ABSTRACT Essential to the oncogenic properties of human papillomavirus type 16 (HPV-16) are the activities encoded by the early gene product E7. HPV-16 E7 (E7.16) binds to cellular factors involved in cell cycle regulation and differentiation. These include the retinoblastoma tumor suppressor protein (Rb) and histone deacetylase (HDAC) complexes. While the biological significance of these interactions remains unclear, E7 is believed to help maintain cells in a proliferative state, thus establishing an environment that is conducive to viral replication. Most pathways that govern cell growth converge on downstream effectors. Among these is the cdc25A tyrosine phosphatase. cdc25A is required for G1/S transition, and its deregulation is associated with carcinogenesis. Considering the importance of cdc25A in cell cycle progression, it represents a relevant target for viral oncoproteins. Accordingly, the present study focuses on the putative deregulation of cdc25A by E7.16. Our results indicate that E7.16 can impede growth arrest induced during serum starvation and keratinocyte differentiation. Importantly, these E7-specific phenotypes correlate with elevated cdc25A steady-state levels. Reporter assays performed with NIH 3T3 cell lines and human keratinocytes indicate that E7 can transactivate the cdc25A promoter. In addition, transcriptional activation by E7.16 requires the distal E2F site within the cdc25A promoter. We further demonstrate that the ability of E7 to abrogate cell cycle arrest, activate cdc25A transcription, and increase cdc25A protein levels requires intact Rb and HDAC-1 binding domains. Finally, by using the cdk inhibitor roscovitine, we reveal that E7 activates the cdc25A promoter independently of cell cycle progression and cdk activity. Consequently, we propose that E7.16 can directly target cdc25A transcription and maintains cdc25A gene expression by disrupting Rb/E2F/HDAC-1 repressor complexes.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Umadevi V Wesley ◽  
Daniel Tremmel ◽  
Robert Dempsey

Introduction: The molecular mechanisms of cerebral ischemia damage and protection are not completely understood, but a number of reports implicate the contribution of lipid metabolism and cell-cycle regulating proteins in stroke out come. We have previously shown that tricyclodecan-9-yl-xanthogenate (D609) resulted in increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR). We hypothesized that D609 induced cell cycle arrest probably by inhibiting sphingomyelin synthase (SMS). In this study, we examined the direct effects of SMS on cell cycle progression and proliferation of neuroblast cells. Methods: Ischemia was induced by middle cerebral artery occlusion (MCAO) and reperfusion. Expression levels were measured by western blot analysis, RT-PCR, and Immunofluorescence staining. SMS1 and 2 expressions were silenced by stable transfection with SMS1/2-targeted shRNA. Cell cycle analysis was performed using Flow cytometry. Data were analyzed using MODFIT cell cycle analysis program. Cell proliferation rate was measured by MTT assay. Results: We have identified that the expression of SMS1is significantly up-regulated in the ischemic hemisphere following MCAO. Neuro-2a cells transfected with SMS specific ShRNA acquired more neuronal like phenotype and exhibited decreased proliferation rate. Also, silencing of both SMS1 and 2 induced cell-cycle arrest as shown by significantly increased percentage of cells in G0/G1 and decreased proportion of cells in S-phase as compared to control cells. This was accompanied by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and decreased levels of phophorylated AKT levels. Furthermore, loss of SMS inhibited the migratory potential of Neuro 2a cells. Summary: Up-regulation of SMS under ischemic/reperfusion conditions suggests that this enzyme potentially contributes to cell cycle regulation and may contribute to maintaining neuronal cell population. Further studies may open up a new direction for identifying the molecular mechanisms of cell cycle regulation and protection following ischemic stroke


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


Sign in / Sign up

Export Citation Format

Share Document