scholarly journals Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice

2020 ◽  
Vol 117 (17) ◽  
pp. 9393-9400 ◽  
Author(s):  
Yoshitaka Fujihara ◽  
Yonggang Lu ◽  
Taichi Noda ◽  
Asami Oji ◽  
Tamara Larasati ◽  
...  

Sperm–oocyte fusion is a critical event in mammalian fertilization, categorized by three indispensable proteins. Sperm membrane protein IZUMO1 and its counterpart oocyte membrane protein JUNO make a protein complex allowing sperm to interact with the oocyte, and subsequent sperm–oocyte fusion. Oocyte tetraspanin protein CD9 also contributes to sperm–oocyte fusion. However, the fusion process cannot be explained solely by these three essential factors. In this study, we focused on analyzing a testis-specific gene 4930451I11Rik and generated mutant mice using the CRISPR/Cas9 system. Although IZUMO1 remained in 4930451I11Rik knockout (KO) spermatozoa, the KO spermatozoa were unable to fuse with oocytes and the KO males were severely subfertile. 4930451I11Rik encodes two isoforms: a transmembrane (TM) form and a secreted form. Both CRISPR/Cas9-mediated TM deletion and transgenic (Tg) rescue with the TM form revealed that only the TM form plays a critical role in sperm–oocyte fusion. Thus, we renamed this TM form Fertilization Influencing Membrane Protein (FIMP). The mCherry-tagged FIMP TM form was localized to the sperm equatorial segment where the sperm–oocyte fusion event occurs. Thus, FIMP is a sperm-specific transmembrane protein that is necessary for the sperm–oocyte fusion process.

2020 ◽  
Vol 117 (21) ◽  
pp. 11493-11502 ◽  
Author(s):  
Taichi Noda ◽  
Yonggang Lu ◽  
Yoshitaka Fujihara ◽  
Seiya Oura ◽  
Takayuki Koyano ◽  
...  

Sperm−oocyte membrane fusion is one of the most important events for fertilization. So far, IZUMO1 and Fertilization Influencing Membrane Protein (FIMP) on the sperm membrane and CD9 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been identified as fusion-required proteins. However, the molecular mechanisms for sperm−oocyte fusion are still unclear. Here, we show that testis-enriched genes, sperm−oocyte fusion required 1 (Sof1/Llcfc1/1700034O15Rik), transmembrane protein 95 (Tmem95), and sperm acrosome associated 6 (Spaca6), encode sperm proteins required for sperm−oocyte fusion in mice. These knockout (KO) spermatozoa carry IZUMO1 but cannot fuse with the oocyte plasma membrane, leading to male sterility. Transgenic mice which expressed mouseSof1,Tmem95,andSpaca6rescued the sterility ofSof1,Tmem95, andSpaca6KO males, respectively. SOF1 and SPACA6 remain in acrosome-reacted spermatozoa, and SPACA6 translocates to the equatorial segment of these spermatozoa. The coexpression of SOF1, TMEM95, and SPACA6 in IZUMO1-expressing cultured cells did not enhance their ability to adhere to the oocyte membrane or allow them to fuse with oocytes. SOF1, TMEM95, and SPACA6 may function cooperatively with IZUMO1 and/or unknown fusogens in sperm−oocyte fusion.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ismael Lamas-Toranzo ◽  
Julieta G Hamze ◽  
Enrica Bianchi ◽  
Beatriz Fernández-Fuertes ◽  
Serafín Pérez-Cerezales ◽  
...  

The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.


2020 ◽  
Author(s):  
Ismael Lamas-Toranzo ◽  
Julieta G Hamze ◽  
Enrica Bianchi ◽  
Beatriz Fernández-Fuertes ◽  
Serafín Pérez-Cerezales ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3793
Author(s):  
Sophie Blinker ◽  
Jocelyne Vreede ◽  
Peter Setlow ◽  
Stanley Brul

Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore’s inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.


1990 ◽  
Vol 10 (2) ◽  
pp. 131-139
Author(s):  
Oyewole Adeyemo ◽  
E. O. Okegbile ◽  
O. O. Olorunsogo

For the development of immunological contraception, attention is being concentrated on the possibility of using a sperm membrane antigen. Boar sperm membrane was extracted with triton-X 100 and fractionated by Sephadex G-150 column chromatography. The glycosylated and nonglycosylated portions of protein peaks from the gel filtration were obtained by fractionating on concanavalin A-Sepharose and eluting the bound protein with 0.3 M methyl mannoside. A glycosylated fraction was found to induce sperm agglutinating antibodies in rabbit. The partially purified protein has a molecular weight of 30 kilodaltons, as determined by sodium dodecyl polyaccyrlamide gel electrophoresis. Further work is planned on the histochemical determination of the origin of this protein and species cross-activity of the antibody.


Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 1-17 ◽  
Author(s):  
P.M. Wassarman

Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Marlin Touma ◽  
Xuedong Kang ◽  
Fuying Gao ◽  
Yan Zhao ◽  
Reshma Biniwale ◽  
...  

Background: Fetal to neonatal transition of heart involves major changes in cardiomyocytes (CMC) including proliferative capacity. However, the chamber specific CMC proliferation programs of remain poorly understood. Elucidating the mechanisms involved is critical to develop chamber specific therapies for newborn infants with single ventricle physiology and other congenital heart defects (CHDs). Methods: Transcriptomes of mouse left ventricle (LV) and right ventricle (RV) were analyzed by RNA-seq at postnatal days 0 (P0), P3 and P7. R package and Ingenuity suite were used for weighted gene co-expression network analysis (WGCNA) and gene ontology studies. Mechanistic analysis was conducted using gain and loss of function approaches. Results: Mouse neonatal cardiac transcriptome was mostly affected by developmental stage. WGCNA revealed 5 LV and 8 RV modules that were significantly correlated with maturation stage and highly preserved between both ventricles at P0 and P7. In contrast, P3 specific gene modules exhibited the largest chamber specific variations in cell signaling, involving proliferation in LV and Wnt signaling molecules, including Wnt11, in RV. Importantly, Wnt11 expression significantly decreased in cyanotic CHDs phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Notably, Perinatal hypoxia treatment in mice suppressed Wnt11 expression, induced CMC proliferation, downregulated Rb1 expression and enhanced Rb1 phosphorylation more robustly in RV vs. LV. Remarkably, Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse heart and reduced Rb1 expression and phosphorylation in primary neonatal CMC. Importantly, downregulated Wnt11 in hypoxemic TOF infantile heart was also associated with Rb1 suppression and inversely correlated with proliferation marker Plk1 in human. Conclusion: Using integrated systems genomic and functional biology analyses of perinatal cardiac transcriptome, we revealed a previously uncharacterized function for Wnt11 in chamber specific growth and cyanotic CHD. Reduction of Wnt11 expression by hypoxia plays a critical role in neonatal CMC proliferation via modulating Rb1 expression and activity.


Sign in / Sign up

Export Citation Format

Share Document