scholarly journals Alkali magmatism on a carbonaceous chondrite planetesimal

2020 ◽  
Vol 117 (15) ◽  
pp. 8353-8359 ◽  
Author(s):  
Jérôme Aléon ◽  
Alice Aléon-Toppani ◽  
Bernard Platevoet ◽  
Jacques-Marie Bardintzeff ◽  
Kevin D. McKeegan ◽  
...  

Recent isotopic and paleomagnetic data point to a possible connection between carbonaceous chondrites and differentiated planetary materials, suggesting the existence, perhaps ephemeral, of transitional objects with a layered structure whereby a metal-rich core is enclosed by a silicate mantle, which is itself overlain by a crust containing an outermost layer of primitive solar nebula materials. This idea has not received broad support, mostly because of a lack of samples in the meteoritic record that document incipient melting at the onset of planetary differentiation. Here, we report the discovery and the petrologic–isotopic characterization of UH154-11, a ferroan trachybasalt fragment enclosed in a Renazzo-type carbonaceous chondrite (CR). Its chemical and oxygen isotopic compositions are consistent with very-low-degree partial melting of a Vigarano-type carbonaceous chondrite (CV) from the oxidized subgroup at a depth where fluid-assisted metamorphism enhanced the Na content. Its microdoleritic texture indicates crystallization at an increasing cooling rate, such as would occur during magma ascent through a chondritic crust. This represents direct evidence of magmatic activity in a carbonaceous asteroid on the verge of differentiating and demonstrates that some primitive outer Solar System objects related to icy asteroids and comets underwent a phase of magmatic activity early in the Solar System. With its peculiar petrology, UH154-11 can be considered the long-sought first melt produced during partial differentiation of a carbonaceous chondritic planetary body, bridging a previously persistent gap in differentiation processes from icy cometary bodies to fully melted iron meteorites with isotopic affinities to carbonaceous chondrites.

2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Timothy O’Brien ◽  
John A. Tarduno ◽  
Atma Anand ◽  
Aleksey V. Smirnov ◽  
Eric G. Blackman ◽  
...  

AbstractMeteorite magnetizations can provide rare insight into early Solar System evolution. Such data take on new importance with recognition of the isotopic dichotomy between non-carbonaceous and carbonaceous meteorites, representing distinct inner and outer disk reservoirs, and the likelihood that parent body asteroids were once separated by Jupiter and subsequently mixed. The arrival time of these parent bodies into the main asteroid belt, however, has heretofore been unknown. Herein, we show that weak CV (Vigarano type) and CM (Mighei type) carbonaceous chondrite remanent magnetizations indicate acquisition by the solar wind 4.2 to 4.8 million years after Ca-Al-rich inclusion (CAI) formation at heliocentric distances of ~2–4 AU. These data thus indicate that the CV and CM parent asteroids had arrived near, or within, the orbital range of the present-day asteroid belt from the outer disk isotopic reservoir within the first 5 million years of Solar System history.


2021 ◽  
Vol 7 (17) ◽  
pp. eabg9707
Author(s):  
Akira Tsuchiyama ◽  
Akira Miyake ◽  
Satoshi Okuzumi ◽  
Akira Kitayama ◽  
Jun Kawano ◽  
...  

Water is abundant as solid ice in the solar system and plays important roles in its evolution. Water is preserved in carbonaceous chondrites as hydroxyl and/or H2O molecules in hydrous minerals, but has not been found as liquid. To uncover such liquid, we performed synchrotron-based x-ray computed nanotomography and transmission electron microscopy with a cryo-stage of the aqueously altered carbonaceous chondrite Sutter’s Mill. We discovered CO2-bearing fluid (CO2/H2O > ~0.15) in a nanosized inclusion incorporated into a calcite crystal, appearing as CO2 ice and/or CO2 hydrate at 173 K. This is direct evidence of dynamic evolution of the solar system, requiring the Sutter’s Mill’s parent body to have formed outside the CO2 snow line and later transportation to the inner solar system because of Jupiter’s orbital instability.


Author(s):  
Mario Villalobos-Forbes ◽  
Germain Esquivel-Hernández ◽  
Ricardo Sánchez-Murillo ◽  
Rolando Sánchez-Gutiérrez ◽  
Ioannis Matiatos

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Luana Bontempo ◽  
Daniela Bertoldi ◽  
Pietro Franceschi ◽  
Fabio Rossi ◽  
Roberto Larcher

Umbrian tobacco of the Virginia Bright variety is one of the most appreciated tobaccos in Europe, and one characterized by an excellent yield. In recent years, the Umbria region and local producers have invested in introducing novel practices (for production and processing) focused on environmental, social, and economic sustainability. Due to this, tobacco from Umbria is a leading commodity in the global tobacco industry, and it claims a high economic value. The aim of this study is then to assess if elemental and isotopic compositions can be used to protect the quality and geographical traceability of this particular tobacco. For the first time the characteristic value ranges of the stable isotope ratios of the bio-elements as a whole (δ2H, δ13C, δ15N, δ18O, and δ34S) and of the concentration of 56 macro- and micro-elements are now available, determined in Virginia Bright tobacco produced in two different areas of Italy (Umbria and Veneto), and from other worldwide geographical regions. The ranges of variability of elements and stable isotope ratios had slightly different results, according to the three geographical origins considered. In particular, Umbria samples presented significantly lower content of metals potentially dangerous for human health. The results of this first exploratory work highlight the possibility of characterizing tobacco from Umbria, and suggest widening the scope of the survey throughout Italy and foreign regions, in order to be used to describe the geographical origin of tobacco in general and verify the origin of the products on the market.


2019 ◽  
Vol 34 (5) ◽  
pp. 522-539
Author(s):  
Emiliano Di Luzio ◽  
Ilenia Arienzo ◽  
Simona Boccuti ◽  
Anna De Meo ◽  
Gianluca Sottili

2009 ◽  
Vol 106 (17) ◽  
pp. 6904-6909 ◽  
Author(s):  
Matthieu Gounelle ◽  
Marc Chaussidon ◽  
Alessandro Morbidelli ◽  
Jean-Alix Barrat ◽  
Cécile Engrand ◽  
...  

Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission.


2016 ◽  
Vol 113 (8) ◽  
pp. 2011-2016 ◽  
Author(s):  
Elishevah M. M. E. Van Kooten ◽  
Daniel Wielandt ◽  
Martin Schiller ◽  
Kazuhide Nagashima ◽  
Aurélien Thomen ◽  
...  

The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.


2018 ◽  
pp. 205-230 ◽  
Author(s):  
R. Sánchez-Murillo ◽  
E. Aguirre-Dueñas ◽  
M. Gallardo-Amestica ◽  
P. Moya-Vega ◽  
C. Birkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document