scholarly journals Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles

2020 ◽  
Vol 117 (19) ◽  
pp. 10492-10499 ◽  
Author(s):  
Zhan Ban ◽  
Peng Yuan ◽  
Fubo Yu ◽  
Ting Peng ◽  
Qixing Zhou ◽  
...  

Protein corona formation is critical for the design of ideal and safe nanoparticles (NPs) for nanomedicine, biosensing, organ targeting, and other applications, but methods to quantitatively predict the formation of the protein corona, especially for functional compositions, remain unavailable. The traditional linear regression model performs poorly for the protein corona, as measured by R2 (less than 0.40). Here, the performance with R2 over 0.75 in the prediction of the protein corona was achieved by integrating a machine learning model and meta-analysis. NPs without modification and surface modification were identified as the two most important factors determining protein corona formation. According to experimental verification, the functional protein compositions (e.g., immune proteins, complement proteins, and apolipoproteins) in complex coronas were precisely predicted with good R2 (most over 0.80). Moreover, the method successfully predicted the cellular recognition (e.g., cellular uptake by macrophages and cytokine release) mediated by functional corona proteins. This workflow provides a method to accurately and quantitatively predict the functional composition of the protein corona that determines cellular recognition and nanotoxicity to guide the synthesis and applications of a wide range of NPs by overcoming limitations and uncertainty.

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcos Fabietti ◽  
Mufti Mahmud ◽  
Ahmad Lotfi

AbstractAcquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these distortions are visually identifiable, other times, they overlay with the signal characteristics making them very difficult to detect. To remove these distortions, the recordings are visually inspected and manually processed. However, this manual annotation process is time-consuming and automatic computational methods are needed to identify and remove these artefacts. Most of the existing artefact removal approaches rely on additional information from other recorded channels and fail when global artefacts are present or the affected channels constitute the majority of the recording system. Addressing this issue, this paper reports a novel channel-independent machine learning model to accurately identify and replace the artefactual segments present in the signals. Discarding these artifactual segments by the existing approaches causes discontinuities in the reproduced signals which may introduce errors in subsequent analyses. To avoid this, the proposed method predicts multiple values of the artefactual region using long–short term memory network to recreate the temporal and spectral properties of the recorded signal. The method has been tested on two open-access data sets and incorporated into the open-access SANTIA (SigMate Advanced: a Novel Tool for Identification of Artefacts in Neuronal Signals) toolbox for community use.


An Individual method of living on with a daily existence it directly influences on your overall health. Since stress is the significant infection of our human body. Like depression, heart attack and mental illness. WHO says “Globally, more than 264 million people of all ages suffer from depression.”[8]. Also the report says that most of the time people are stressed because of their work. 10.7% of People disorder with stress, anxiety and depression [8]. There are different method to discovering stress ex. Smart watches, chest belt, and extraordinary machine. Our principle objective is to figure out pressure progressively utilizing smart watches through their Sensor. There are different kinds of sensor available to find stress such as PPG, GSR, HRV, ECG and temperature. Smart watches contain a wide range of data through various sensor. This kind of gathered information are applied on various machine learning method. Like linear regression, SVM, KNN, decision tree. Technique have distinct, comparing accuracy and chooses best Machine learning model. This paper investigation have different analysis to find and compare accuracy by various sensors data. It is also check whether using one sensor or multiple sensors such as HRV, ECG or GSR and PPG to predict the better accuracy score for stress detection.


2018 ◽  
Vol 5 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Matthew R. Findlay ◽  
Daniel N. Freitas ◽  
Maryam Mobed-Miremadi ◽  
Korin E. Wheeler

Proteins encountered in biological and environmental systems bind to engineered nanomaterials (ENMs) to form a protein corona (PC) that alters the surface chemistry, reactivity, and fate of the ENMs.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1084
Author(s):  
Shaobo Luo ◽  
Yi Zhang ◽  
Kim Truc Nguyen ◽  
Shilun Feng ◽  
Yuzhi Shi ◽  
...  

High accuracy measurement of size is essential in physical and biomedical sciences. Various sizing techniques have been widely used in sorting colloidal materials, analyzing bioparticles and monitoring the qualities of food and atmosphere. Most imaging-free methods such as light scattering measure the averaged size of particles and have difficulties in determining non-spherical particles. Imaging acquisition using camera is capable of observing individual nanoparticles in real time, but the accuracy is compromised by the image defocusing and instrumental calibration. In this work, a machine learning-based pipeline is developed to facilitate a high accuracy imaging-based particle sizing. The pipeline consists of an image segmentation module for cell identification and a machine learning model for accurate pixel-to-size conversion. The results manifest a significantly improved accuracy, showing great potential for a wide range of applications in environmental sensing, biomedical diagnostical, and material characterization.


2021 ◽  
Author(s):  
Marcos M. Raimundo ◽  
Luis Gustavo Nonato ◽  
Jorge Poco

Abstract Mining counterfactual antecedents became a valuable tool to discover knowledge and explain machine learning models. It consists of generating synthetic samples from an original sample to achieve the desired outcome in a machine learning model thus helping to understand the prediction. An insightful methodology would explore a broader set of counterfactual antecedents to reveal multiple possibilities while operating on any classifier. Thus, we create a tree-based search that requires monotonicity from the objective functions (a.k.a. cost functions); it allows pruning branches that will not improve the objective functions. Since monotonicity is only required for the objective function, this method can be used for any family of classifiers (e.g., linear models, neural networks, decision trees). However, additional classifier properties speed up the tree-search when it foresees branches that will not result in feasible actions. Moreover, the proposed optimization generates a diverse set of Pareto-optimal counterfactual antecedents by relying on multi-objective concepts. The results show an algorithm with working guarantees that enumerates a wide range of counterfactual antecedents. It helps the decision-maker understand the machine learning decision and finds alternatives to achieve the desired outcome. The user can inspect these multiple counterfactual antecedents to find the most suitable one and have a broader understanding of the prediction.


Author(s):  
Ratul Chowdhury ◽  
Kumar Gourav Das ◽  
Banani Saha ◽  
Samir Kumar Bandyopadhyay

Social networking applications such as Twitter have increasingly gained significance in terms of socio-economic, political, and religious as well as entertainment sectors. This in turn, has witnessed a wide gamut of information explosion in the social networking realm that can tend to be both useful as well as misleading at the same point of time. Spam detection is one such solution that caters to this problem through identification of irrelevant users and their data. However, existing research has so far laid primary focus on user profile information through activity detection and relevant techniques that may underperform when these profiles exhibit characteristics of temporal dependency, poor reflection of generated content from the user profile, etc. This is the primary motivation for this paper that addresses the aforementioned problem of user profiles by focusing on both profile information and content-based spam detection. To this end, this work delivers three significant contributions. Firstly, exhaustive use of Natural language processing (NLP) techniques has been rendered towards creation of a new comprehensive dataset with a wide range of content-based features. Secondly, this dataset has been fed into a customized state-of-art hybrid machine learning model that has been exclusively built using a combination of both machine learning and deep learning techniques. Extensive simulation based analysis not only records over 98% accuracy but also establishes the practical applicability of this proposal by proving that modeling based on the mixed profile and content-generated data is more capable of spam detection in contrast to each of these standalone approaches. Finally, a novel methodology based on logistic regression is proposed and supported by analytical formulations. This paves the way for the custom-built dataset to be analyzed and corresponding probabilities to be obtained that differentiate legitimate users from spammers. The obtained mathematical outcome can henceforth be used for future prediction of user categories through appropriate parameter tuning for any given dataset. This makes our method a truly generic one capable of identifying and classifying different user categories.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


Sign in / Sign up

Export Citation Format

Share Document