scholarly journals A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination

2020 ◽  
Vol 117 (16) ◽  
pp. 9082-9093 ◽  
Author(s):  
Yuan Zhang ◽  
Xing Li ◽  
Bogoljub Ciric ◽  
Mark T. Curtis ◽  
Wan-Jun Chen ◽  
...  

Current multiple sclerosis (MS) medications are mainly immunomodulatory, having little or no effect on neuroregeneration of damaged central nervous system (CNS) tissue; they are thus primarily effective at the acute stage of disease, but much less so at the chronic stage. An MS therapy that has both immunomodulatory and neuroregenerative effects would be highly beneficial. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that ursolic acid (UA), an antiinflammatory natural triterpenoid, also directly promotes oligodendrocyte maturation and CNS myelin repair. Oral treatment with UA significantly decreased disease severity and CNS inflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Importantly, remyelination and neural repair in the CNS were observed even after UA treatment was started on day 60 post immunization when EAE mice had full-blown demyelination and axonal damage. UA treatment also enhanced remyelination in a cuprizone-induced demyelination model in vivo and brain organotypic slice cultures ex vivo and promoted oligodendrocyte maturation in vitro, indicating a direct myelinating capacity. Mechanistically, UA induced promyelinating neurotrophic factor CNTF in astrocytes by peroxisome proliferator-activated receptor γ(PPARγ)/CREB signaling, as well as by up-regulation of myelin-related gene expression during oligodendrocyte maturation via PPARγ activation. Together, our findings demonstrate that UA has significant potential as an oral antiinflammatory and neural repair agent for MS, especially at the chronic-progressive stage.

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 431 ◽  
Author(s):  
Rosa Vitale ◽  
Enrico D'Aniello ◽  
Stefania Gorbi ◽  
Andrea Martella ◽  
Cristoforo Silvestri ◽  
...  

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


PPAR Research ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yanqin Wang ◽  
Weilin Zhao ◽  
Ge Li ◽  
Jinhu Chen ◽  
Xin Guan ◽  
...  

The aim of the present study was to gain insight into the neuroprotection effects and mechanism of thiazolidinedione pioglitazone in both in vitro and in vivo MPP+/MPTP induced PD models. In vivo experimental results showed that oral treatment of pioglitazone resulted in significant improvements in behavior symptoms damaged by MPTP and increase in the survival of TH positive neurons in the pioglitazone intervention groups. In addition, oral treatment of pioglitazone increased the expression of peroxisome proliferator-activated receptor-γ coactivator of 1α (PGC-1α) and increased the number of mitochondria, along with an observed improvement in mitochondrial ultrastructure. From in vitro studies, 2,4-thiazolidinedione resulted in increased levels of molecules regulated function of mitochondria, including PGC-1α, nuclear respiratory factor 1 (NRF1), NRF2, and mitochondria fusion 2 (Mfn2), and inhibited mitochondria fission 1 (Fis1). We show that protein levels of Bcl-2 and ERK were reduced in the MPP+-treated group compared with the control group. This effect was observed to be reversed upon treatment with 2,4-thiazolidinedione, as Bcl-2 and ERK expression levels were increased. We also observed that levels of the apoptotic protein Bax showed opposite changes compared to Bcl-2 and ERK levels. The results from this study confirm that pioglitazone/2,4-thiazolidinedione is able to activate PGC-1α and prevent damage of dopaminergic neurons and restore mitochondria ultrastructure through the regulation of mitochondria function.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2295-2295
Author(s):  
Moutih Rafei ◽  
Jeremy Hsieh ◽  
Meng Yang Li ◽  
Simone Zehntner ◽  
Kathy Forner ◽  
...  

Abstract Multiple sclerosis (MS) is an autoimmune disease characterised by the infiltration of autoreactive T-cell causing damages to the central nervous system. So far, interferon-β and glatiramer acetate are the only two immunomodulatory coumpounds that have been approved as non-curative disease managing strategies. Therefore, there is an urgent need for the development of novel efficient therapies that can be both safe and potent in inhibiting MS progression and promote reversal of disease state. We have recently published a report describing a novel synthetic GMCSF and IL15 Fusion Transgene (GIFT15) and have described its paradoxical and potent immune suppressive properties in vivo [Rafei et al., Blood (March 2007)]. Its mechanism of action relies on STAT3 hyperactivation arising from aberrant signalling taking place downstream of the IL15 receptor. We have now further studied the effect of GIFT15 on mouse spleen cells in vitro and here demonstrate that it leads to the conversion of murine T-cells to a novel suppressive regulatory cell type. Indeed, GIFT15-treated splenocytes (hereafter GIFT15 regs) shed their TCR and loose expression of CD3, CD4 and CD8, retain CD2 expression and acquire expression of MHC II. Distinct to classic T-regulatory cells, GIFT15 regs do not express CD25 or FOXP3. GIFT15 regs were able to suppress an in vitro two-way MLR by a contact-dependent mechanism as well as by the contemporaneous production of interleukin (IL)-10. Furthermore, GIFT15 regs were able to block antigen-specific activation of CD4-T-cells in response to autologous macrophage stimulation. As a proof-of-principle in vivo study, GIFT15 regs were injected intravenously in mice with pre-established experimental allergic encephalitis (EAE) and disease score was monitored over time. Interestingly, mice recovered significantly faster than controls following administration GIFT15 regs and a blockade in EAE progression was also noticed over time. In conclusion, our data suggests that GIFT15 can be used as a method to ex vivo generate suppressor cells of a new type which are distinct from classic Tregs or Tr1 cells. We propose that GIFT15 regs derived from autologous lymphocytes may be exploited for the treatment of autoimmune disease such as MS and may also be of use for other autoimmune ailments as well.


2007 ◽  
Vol 13 (5) ◽  
pp. 616-621 ◽  
Author(s):  
PS Sorensen ◽  
N. Koch-Henriksen ◽  
K. Bendtzen

Neutralising antibodies (NAbs) against interferon (IFN)-β reduce the treatment effect in multiple sclerosis (MS). However, data from pivotal trials of IFN-β in MS suggest that NAb-positive patients may have a reduced relapse rate during the first six to 12 months of therapy. We collected clinical data and plasma samples for NAb measurements prospectively, every six months, in 468 patients treated with the same IFN-β preparation for at least 24 months. NAbs were measured blindly with a cytopathic effect (CPE) assay. During treatment months 0-6, patients who became NAb-positive had significantly fewer relapses compared to patients who maintained the NAb-negative status, whereas the opposite was observed after month 6. This is in accordance with observations in randomised studies of the three different IFN-β preparations, showing that patients who become NAb-positive have lower relapse rates during the first six or 12 months of therapy. We hypothesise that low affinity NAbs, present early after the start of IFN-β therapy, though neutralising in vitro in sensitive assays increase the half-life of IFN-β in vivo and, thereby, enhance the therapeutic effect. With affinity maturation, NAbs effectively prevent IFN-β binding to its receptors also in vivo and, hence, abolish the treatment effect. Multiple Sclerosis 2007; 13: 616-621. http://msj.sagepub.com


2021 ◽  
Vol 22 (13) ◽  
pp. 6930
Author(s):  
Cauê Benito Scarim ◽  
Francisco Olmo ◽  
Elizabeth Igne Ferreira ◽  
Chung Man Chin ◽  
John M. Kelly ◽  
...  

Hydroxymethylnitrofurazone (NFOH) is a therapeutic candidate for Chagas disease (CD). It has negligible hepatotoxicity in a murine model compared to the front-line drug benznidazole (BZN). Here, using Trypanosoma cruzi strains that express bioluminescent and/or fluorescent reporter proteins, we further investigated the in vitro and in vivo activity of NFOH to define whether the compound is trypanocidal or trypanostatic. The in vitro activity was assessed by exploiting the fluorescent reporter strain using wash-out assays and real-time microscopy. For animal experimentation, BALB/c mice were inoculated with the bioluminescent reporter strain and assessed by highly sensitive in vivo and ex vivo imaging. Cyclophosphamide treatment was used to promote parasite relapse in the chronic stage of infection. Our data show that NFOH acts by a trypanostatic mechanism, and that it is more active than BZN in vitro against the infectious trypomastigote form of Trypanosoma cruzi. We also found that it is more effective at curing experimental infections in the chronic stage, compared with the acute stage, a feature that it shares with BZN. Therefore, given its reduced toxicity, enhanced anti-trypomastigote activity, and curative properties, NFOH can be considered as a potential therapeutic option for Chagas disease, perhaps in combination with other trypanocidal agents.


1987 ◽  
Author(s):  
M Hatmi ◽  
A Del Maschio ◽  
J Lefort ◽  
G De Gaetano ◽  
B B Varqaftiq ◽  
...  

In previous studies we have found (Br. 3. Pharmac. 85, 849, 1985) that a) human platelets pre-exposed to arachidonic acid or to the endoperoxide analogue, U46619 and then washed and resuspended, fail to respond to a second challenge by both arachidonic acid and U46619; b) desensitization by arachidonic acid and U46619 occurs at a site sensitive to endoperoxides / thromboxane (Tx) receptor antagonists; c) the desensitizing effects of U46619 are direct, whereas those of arachidonic acid are mediated by a cyclooxygenase-dependent metabolite. Sulfinpyrazone (100 μM) and its thioether metabolite G25671 (50 μM) are known to suppress arachidonic acid-induced platelet aggregation and TxB2 formation (Eur. 3. Pharmac, 101, 209, 1984). We now demonstrate that the presence of sulfinpyrazone or G25671 during platelet exposure to arachidonic acid or U46619 prevents desensitization. Platelet activation by the endoperoxide analogue U46619 is also prevented by sulfinpyrazone or G25671 (0.3-1 mM). The threshold aggregating concentrations of arachidonic acid and U46619 in healthy subjects before and after oral treatment with sulfinpyrazone were elevated by 2-3 fold and a good correlation between ex vivo and in vitro findings was established. We finally examined the actions of sulfinpyrazone and G25671 on the bronchoconstriction in vivo and parenchymal lung strip contraction in vitro induced by U46619. Neither drug had any preventive effect.Our results demonstrate that sulfinpyrazone and its metabolite G25671 are not only cyclooxygenase inhibitors but can also act as endoperoxide/Tx antagonists and indicate clearly that antagonism of U46619 by both drugs is selective for platelets.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


Sign in / Sign up

Export Citation Format

Share Document