A GMCSF/Interleukin-15 Fusokine Leads to the Generation of a Novel Type of CD2/MHCII Immune Regulatory Cell with Potent Immune Suppressive Properties as Demonstrated in the EAE Mouse Model of Multiple Sclerosis.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2295-2295
Author(s):  
Moutih Rafei ◽  
Jeremy Hsieh ◽  
Meng Yang Li ◽  
Simone Zehntner ◽  
Kathy Forner ◽  
...  

Abstract Multiple sclerosis (MS) is an autoimmune disease characterised by the infiltration of autoreactive T-cell causing damages to the central nervous system. So far, interferon-β and glatiramer acetate are the only two immunomodulatory coumpounds that have been approved as non-curative disease managing strategies. Therefore, there is an urgent need for the development of novel efficient therapies that can be both safe and potent in inhibiting MS progression and promote reversal of disease state. We have recently published a report describing a novel synthetic GMCSF and IL15 Fusion Transgene (GIFT15) and have described its paradoxical and potent immune suppressive properties in vivo [Rafei et al., Blood (March 2007)]. Its mechanism of action relies on STAT3 hyperactivation arising from aberrant signalling taking place downstream of the IL15 receptor. We have now further studied the effect of GIFT15 on mouse spleen cells in vitro and here demonstrate that it leads to the conversion of murine T-cells to a novel suppressive regulatory cell type. Indeed, GIFT15-treated splenocytes (hereafter GIFT15 regs) shed their TCR and loose expression of CD3, CD4 and CD8, retain CD2 expression and acquire expression of MHC II. Distinct to classic T-regulatory cells, GIFT15 regs do not express CD25 or FOXP3. GIFT15 regs were able to suppress an in vitro two-way MLR by a contact-dependent mechanism as well as by the contemporaneous production of interleukin (IL)-10. Furthermore, GIFT15 regs were able to block antigen-specific activation of CD4-T-cells in response to autologous macrophage stimulation. As a proof-of-principle in vivo study, GIFT15 regs were injected intravenously in mice with pre-established experimental allergic encephalitis (EAE) and disease score was monitored over time. Interestingly, mice recovered significantly faster than controls following administration GIFT15 regs and a blockade in EAE progression was also noticed over time. In conclusion, our data suggests that GIFT15 can be used as a method to ex vivo generate suppressor cells of a new type which are distinct from classic Tregs or Tr1 cells. We propose that GIFT15 regs derived from autologous lymphocytes may be exploited for the treatment of autoimmune disease such as MS and may also be of use for other autoimmune ailments as well.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2011 ◽  
Vol 4 (4) ◽  
pp. 211
Author(s):  
Serena Meraviglia ◽  
Carmela La Mendola ◽  
Valentina Orlando ◽  
Francesco Scarpa ◽  
Giuseppe Cicero ◽  
...  

The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.<br />


2019 ◽  
Vol 116 (51) ◽  
pp. 25800-25807 ◽  
Author(s):  
Joseph J. Sabatino ◽  
Michael R. Wilson ◽  
Peter A. Calabresi ◽  
Stephen L. Hauser ◽  
Jonathan P. Schneck ◽  
...  

CD8+T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+CD8+T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+T cells in MS, indicates these cells may be attractive targets in MS therapy.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Hiroshi Takata ◽  
Cari Kessing ◽  
Aaron Sy ◽  
Noemia Lima ◽  
Julia Sciumbata ◽  
...  

ABSTRACT The low frequency of latently HIV-infected cells in vivo limits the testing of potential HIV cure strategies using cells from successfully suppressed individuals. To date, primary cell models of latency use cells infected in vitro. Primary CD4+ T cell models carrying an individual’s endogenous HIV reservoir that recapitulate in vivo conditions of HIV latency are still outstanding. We developed a primary CD4+ T cell model of HIV latency derived from memory CD4+ T cells isolated from virally suppressed HIV-infected individuals that recapitulates HIV-1 latency and viral reactivation events. This model is based on the expansion of primary CD4+ T cells up to 300-fold in cell number. These cells reestablish a resting state without active virus production after extended culture and maintain a stable number of total HIV proviruses. The ability of these cells to respond to various classes of latency-reversing agents is similar to that of ex vivo CD4+ T cells directly isolated from blood. Importantly, viral outgrowth assays confirmed the ability of these expanded cells to produce replication-competent endogenous virus. In sum, this model recapitulates ex vivo viral reactivation conditions, captures the variability between individuals with different HIV reservoirs, and provides large numbers of cells for testing multiple agents from a single donor. The use of this novel model will allow accurate exploration of novel cure approaches aimed either at promoting viral reactivation or maintaining sustained latency. IMPORTANCE Primary cell models of HIV latency have been very useful to identify mechanisms contributing to HIV latency and to evaluate potential HIV cure strategies. However, the current models utilize in vitro infection with exogenous virus that does not fully recapitulate virus reactivation profiles of endogenous HIV in in vivo-infected CD4+ T cells. In contrast, obtaining sufficient amounts of CD4+ T cells from HIV-infected individuals to interrogate the HIV reservoir in vitro requires leukapheresis. In the model we propose here, in vitro expansion and extended culture of primary CD4+ T cells isolated from virally suppressed HIV-infected individuals enable obtaining large numbers of cells harboring endogenous latent HIV reservoirs without performing leukapheresis. This model captures the variability of HIV reservoirs seeded in different individuals and should be useful to evaluate future HIV cure strategies.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


1996 ◽  
Vol 184 (2) ◽  
pp. 783-788 ◽  
Author(s):  
N J Karandikar ◽  
C L Vanderlugt ◽  
T L Walunas ◽  
S D Miller ◽  
J A Bluestone

CTLA-4, a CD28 homologue expressed on activated T cells, binds with high affinity to the CD28 ligands, B7-1 (CD80) and B7-2 (CD86). This study was designed to examine the role of CTLA-4 in regulating autoimmune disease. Murine relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) is a demyelinating disease mediated by PLP139-151-specific CD4+ T cells in SJL/J mice. Anti-CTLA-4 mAbs (or their F(ab) fragments) enhanced in vitro proliferation and pro-inflammatory cytokine production by PLP139-151-primed lymph node cells. Addition of either reagent to in vitro activation cultures potentiated the ability of T cells to adoptively transfer disease to naive recipients. In vivo administration of anti-CTLA-4 mAb to recipients of PLP139-151-specific T cells resulted in accelerated and exacerbated disease. Finally, anti-CTLA-4 treatment of mice during disease remission resulted in the exacerbation of relapses. Collectively, these results suggest that CTLA-4 mediates the downregulation of ongoing immune responses and plays a major role in regulating autoimmunity.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
N. N. Parayath ◽  
S. B. Stephan ◽  
A. L. Koehne ◽  
P. S. Nelson ◽  
M. T. Stephan

AbstractEngineering chimeric antigen receptors (CAR) or T cell receptors (TCR) helps create disease-specific T cells for targeted therapy, but the cost and rigor associated with manufacturing engineered T cells ex vivo can be prohibitive, so programing T cells in vivo may be a viable alternative. Here we report an injectable nanocarrier that delivers in vitro-transcribed (IVT) CAR or TCR mRNA for transiently reprograming of circulating T cells to recognize disease-relevant antigens. In mouse models of human leukemia, prostate cancer and hepatitis B-induced hepatocellular carcinoma, repeated infusions of these polymer nanocarriers induce sufficient host T cells expressing tumor-specific CARs or virus-specific TCRs to cause disease regression at levels similar to bolus infusions of ex vivo engineered lymphocytes. Given their ease of manufacturing, distribution and administration, these nanocarriers, and the associated platforms, could become a therapeutic for a wide range of diseases.


Sign in / Sign up

Export Citation Format

Share Document