scholarly journals Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD

2020 ◽  
Vol 117 (26) ◽  
pp. 15209-15220 ◽  
Author(s):  
Deirdre B. Hoban ◽  
Shelby Shrigley ◽  
Bengt Mattsson ◽  
Ludivine S. Breger ◽  
Ulla Jarl ◽  
...  

Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson’s disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lu Yu ◽  
Siying Liu ◽  
Chen Wang ◽  
Chuanyu Zhang ◽  
Yajie Wen ◽  
...  

Abstract Background Embryonic stem cell-derived extracellular vesicles (ESC-EVs) possess therapeutic potential for a variety of diseases and are considered as an alternative of ES cells. Acute kidney injury (AKI) is a common acute and severe disease in clinical practice, which seriously threatens human life and health. However, the roles and mechanisms of ESC-EVs on AKI remain unclear. Methods In this study, we evaluated the effects of ESC-EVs on physiological repair and pathological repair using murine ischemia-reperfusion injury-induced AKI model, the potential mechanisms of which were next investigated. EVs were isolated from ESCs and EVs derived from mouse fibroblasts as therapeutic controls. We then investigated whether ESC-EVs can restore the structure and function of the damaged kidney by promoting physiological repair and inhibiting the pathological repair process after AKI in vivo and in vitro. Results We found that ESC-EVs significantly promoted the recovery of the structure and function of the damaged kidney. ESC-EVs increased the proliferation of renal tubular epithelial cells, facilitated renal angiogenesis, inhibited the progression of renal fibrosis, and rescued DNA damage caused by ischemia and reperfusion after AKI. Finally, we found that ESC-EVs play a therapeutic effect by activating Sox9+ cells. Conclusions ESC-EVs significantly promote the physiological repair and inhibit the pathological repair after AKI, enabling restoration of the structure and function of the damaged kidney. This strategy might emerge as a novel therapeutic strategy for ESC clinical application.


2013 ◽  
Vol 110 (08) ◽  
pp. 244-256 ◽  
Author(s):  
Chung-Yang Kao ◽  
Shu-Jhu Yang ◽  
Mi-Hua Tao ◽  
Yung-Ming Jeng ◽  
I-Shing Yu ◽  
...  

SummaryUsing gain-of-function factor IX (FIX) for replacement therapy for haemophilia B (HB) is an attractive strategy. We previously reported a high-activity FIX, FIX-Triple (FIX-V86A/E277A/R338A) as a good substitute for FIX-WT (wild-type) in protein replacement therapy, gene therapy, and cell therapy. Here we generated a new recombinant FIXTripleL (FIX-V86A/E277A/R338L) by replacing the alanine at residue 338 of FIX-Triple with leucine as in FIX-Padua (FIX-R338L). Purified FIX-TripleL exhibited 22-fold higher specific clotting activity and 15-fold increased binding affinity to activated FVIII compared to FIXWT. FIX-TripleL increased the therapeutic potential of FIX-Triple by nearly 100% as demonstrated with calibrated automated thrombogram and thromboelastography. FIX-TripleL demonstrated a normal clearance rate in HB mice. The clotting activity of FIX-TripleL was consistently 2- to 3-fold higher in these mice than that of FIX-Triple or FIXR338L. Gene delivery of adeno-associated virus (AAV) in HB mice showed that FIX-TripleL had 15-fold higher specific clotting activity than FIX-WT, and this activity was significantly better than FIX-Triple (10-fold) or FIX-R338L (6-fold). At a lower viral dose, FIX-TripleL improved FIX activity from sub-therapeutic to therapeutic levels. Under physiological conditions, no signs of adverse thrombotic events were observed in long-term AAV-FIX-treated C57Bl/6 mice. Hepatocellular adenomas were observed in the high- but not the medium- or the lowdose AAV-treated mice expressing FIX-WT or FIX-Triple, indicating the advantages of using hyperfunctional FIX variants to reduce viral doses while maintaining therapeutic clotting activity. Thus, incorporation of the FIX Padua mutation significantly improves the clotting function of FIX-Triple so as to optimise protein replacement therapy and gene therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 656
Author(s):  
Yung-An Huang ◽  
Jeng-Chang Chen ◽  
Chih-Ching Wu ◽  
Chia-Wei Hsu ◽  
Albert Min-Shan Ko ◽  
...  

Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.


2020 ◽  
Vol 11 ◽  
Author(s):  
Felipe Patricio ◽  
Alan Axel Morales-Andrade ◽  
Aleidy Patricio-Martínez ◽  
Ilhuicamina Daniel Limón

The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.


2017 ◽  
Vol 26 (9) ◽  
pp. 1572-1581 ◽  
Author(s):  
Alberto Perez-Bouza ◽  
Stefano Di Santo ◽  
Stefanie Seiler ◽  
Morten Meyer ◽  
Lukas Andereggen ◽  
...  

Transplantation of fetal ventral mesencephalic (VM) neurons for Parkinson’s disease (PD) is limited by poor survival and suboptimal integration of grafted tissue into the host brain. In a 6-hydroxydopamine rat model of PD, we investigated the feasibility of simultaneous transplantation of rat fetal VM tissue and polymer-encapsulated C2C12 myoblasts genetically modified to produce glial cell line–derived neurotrophic factor (GDNF) or mock-transfected myoblasts on graft function. Amphetamine-induced rotations were assessed prior to transplantation and 2, 4, 6 and 9 wk posttransplantation. We found that rats grafted with VM transplants and GDNF capsules showed a significant functional recovery 4 wk after implantation. In contrast, rats from the VM transplant and mock-capsule group did not improve at any time point analyzed. Moreover, we detected a significantly higher number of tyrosine hydroxylase immunoreactive (TH-ir) cells per graft (2-fold), a tendency for a larger graft volume and an overall higher TH-ir fiber outgrowth into the host brain (1.7-fold) in the group with VM transplants and GDNF capsules as compared to the VM transplant and mock-capsule group. Most prominent was the TH-ir fiber outgrowth toward the capsule (9-fold). Grafting of GDNF-pretreated VM transplants in combination with the implantation of GDNF capsules resulted in a tendency for a higher TH-ir fiber outgrowth into the host brain (1.7-fold) as compared to the group transplanted with untreated VM transplants and GDNF capsules. No differences between groups were observed for the number of surviving TH-ir neurons or graft volume. In conclusion, our findings demonstrate that simultaneous transplantation of fetal VM tissue and encapsulated GDNF-releasing cells is feasible and support the graft survival and function. Pretreatment of donor tissue with GDNF may offer a way to further improve cell transplantation approaches for PD.


Stem Cells ◽  
2009 ◽  
Vol 27 (9) ◽  
pp. 2126-2135 ◽  
Author(s):  
Bin Lu ◽  
Christopher Malcuit ◽  
Shaomei Wang ◽  
Sergej Girman ◽  
Peter Francis ◽  
...  

Author(s):  
Evi Zohar

Continuing the workshop I've given in the WPC Paris (2017), this article elaborates my discussion of the way I interlace Focusing with Differentiation Based Couples Therapy (Megged, 2017) under the systemic view, in order to facilitate processes of change and healing in working with intimate couples. This article presents the theory and rationale of integrating Differentiation (Bowen, 1978; Schnarch, 2009; Megged, 2017) and Focusing (Gendlin, 1981) approaches, and its therapeutic potential in couple's therapy. It is written from the point of view of a practicing professional in order to illustrate the experiential nature and dynamics of the suggested therapeutic path. Differentiation is a key to mutuality. It offers a solution to the central struggle of any long term intimate relationship: balancing two basic life forces - the drive for individuality and the drive for togetherness (Schnarch, 2009). Focusing is a body-oriented process of self-awareness and emotional healing, in which one learns to pay attention to the body and the ‘Felt Sense’, in order to unfold the implicit, keep it in motion at the precise pace it needs for carrying the next step forward (Gendlin, 1996). Combining Focusing and Differentiation perspectives can cultivate the kind of relationship where a conflict can be constructively and successfully held in the inner world of each partner, while taking into consideration the others' well-being. This creates the possibility for two people to build a mutual emotional field, open to changes, permeable and resilient.


Sign in / Sign up

Export Citation Format

Share Document