scholarly journals Molecular characterization of a fungal gasdermin-like protein

2020 ◽  
Vol 117 (31) ◽  
pp. 18600-18607 ◽  
Author(s):  
Asen Daskalov ◽  
Patrick S. Mitchell ◽  
Andrew Sandstrom ◽  
Russell E. Vance ◽  
N. Louise Glass

Programmed cell death (PCD) in filamentous fungi prevents cytoplasmic mixing following fusion between conspecific genetically distinct individuals (allorecognition) and serves as a defense mechanism against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (i.e., senescence plasmids). Recently, we identifiedregulatorof cell death-1(rcd-1), a gene controlling PCD in germinated asexual spores in the filamentous fungusNeurospora crassa.rcd-1alleles are highly polymorphic and fall into two haplogroups inN. crassapopulations. Coexpression of alleles from the two haplogroups,rcd-1–1andrcd-1–2, is necessary and sufficient to trigger a cell death reaction. Here, we investigated the molecular bases ofrcd-1-dependent cell death. Based on in silico analyses, we found that RCD-1 is a remote homolog of the N-terminal pore-forming domain of gasdermin, the executioner protein of a highly inflammatory cell death reaction termed pyroptosis, which plays a key role in mammalian innate immunity. We show that RCD-1 localizes to the cell periphery and that cellular localization of RCD-1 was correlated with conserved positively charged residues on predicted amphipathic α-helices, as shown for murine gasdermin-D. Similar to gasdermin, RCD-1 binds acidic phospholipids in vitro, notably, cardiolipin and phosphatidylserine, and interacts with liposomes containing such lipids. The RCD-1 incompatibility system was reconstituted in human 293T cells, where coexpression of incompatiblercd-1–1/rcd-1–2alleles triggered pyroptotic-like cell death. Oligomers of RCD-1 were associated with the cell death reaction, further supporting the evolutionary relationship between gasdermin andrcd-1. This report documents an ancient transkingdom relationship of cell death execution modules involved in organismal defense.

1977 ◽  
Vol 145 (1) ◽  
pp. 136-150 ◽  
Author(s):  
A E Butterworth ◽  
J R David ◽  
D Franks ◽  
A A Mahmoud ◽  
P H David ◽  
...  

After earlier observations that antibody-dependent, cell-mediated damage to 51Cr-labeled schistosomula can be ablated by pretreatment of a mixed preparation of human peripheral blood leukocytes with an anti-eosinophil serum and complement, we investigated the cytotoxic effects of eosinophil-enriched cell preparations. Preparations containing up to 98.5% eosinophils and devoid of neutrophils were effective in mediating antibody-dependent damage to schistosomula. Preparations enriched in mononuclear cells or in neutrophils, and devoid of eosinophils, were inactive. Eosinophils from some patients with eosinophilia induced by schistosomiasis were less active on a cell-to-cell basis than cells from normal individuals. The possibility that such cells were initially blocked by immune complexes was considered, and it was found that reasonable cytotoxicity by purified eosinophils from patients with eosinophilia could be generated by overnight cultures. A possible requirement for cooperation between eosinophils and other cell types was also studied. Lymphocytes, neutrophils and monocytes failed to enhance eosinophil-mediated cytotoxicity. These results provide further evidence that the eosinophil is the only cell in man responsible for antibody-dependent, complement-independent damage to schistosomula in vitro. Eosinophils from individuals, however, differ in their cytotoxic potential by a mechanism yet to be elucidated. The possible relationship of these findings to immunity in vivo is discussed.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 376
Author(s):  
Chantal B. Lucini ◽  
Ralf J. Braun

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Liang Ge ◽  
David Melville ◽  
Min Zhang ◽  
Randy Schekman

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.


1999 ◽  
Vol 112 (15) ◽  
pp. 2521-2528 ◽  
Author(s):  
I. Korichneva ◽  
U. Hammerling

The retro-retinoids, metabolites of vitamin A (retinol), belong to a family of lipophilic signalling molecules implicated in regulation of cell growth and survival. Growth-promoting properties have been ascribed to 14-hydroxy-retro-retinol (14HRR), while anhydroretinol (AR) was discovered to act as a natural antagonist triggering growth arrest and death by apoptosis. Based on morphological studies and inhibition of apoptosis by the kinase blocker, herbimycin A, it has been suggested that retro-retinoids exhibit their function in the cytosolic compartment. F-actin emerged as a functional target for retro-retinoid action. By FACS analysis and fluorescence microscopy of phalloidin-FITC labeled cells we demonstrated that F-actin reorganization was an early event in AR-triggered apoptosis. Fluorescence images of AR-treated fibroblasts displayed short, thick, stick-like and punctate structures, and membrane ruffles at the cell periphery along with an increased diffuse staining pattern. Reversal of the AR effect by 14HRR or retinol indicates that F-actin is a common site for regulation by retro-retinoids. Inhibition of both cell death and actin depolymerisation by bcl-2 implies that cytoskeleton reorganization is downstream of bcl-2-related processes. Furthermore, stabilization of microfilaments by jasplakinolide increased the survival potential of AR treated cells, while weakening the cytoskeleton by cytochalasin B abetted apoptosis. Thus the cytoskeleton is an important way station in a communication network that decides whether a cell should live or die.


2002 ◽  
Vol 277 (51) ◽  
pp. 49989-49997 ◽  
Author(s):  
Gang Xu ◽  
Carlos Arregui ◽  
Jack Lilien ◽  
Janne Balsamo

The nonreceptor tyrosine phosphatase PTP1B associates with the cytoplasmic domain of N-cadherin and may regulate cadherin function through dephosphorylation of β-catenin. We have now identified the domain on N-cadherin to which PTP1B binds and characterized the effect of perturbing this domain on cadherin function. Deletion constructs lacking amino acids 872–891 fail to bind PTP1B. This domain partially overlaps with the β-catenin binding domain. To further define the relationship of these two sites, we used peptides to competein vitrobinding. A peptide representing the most NH2-terminal 8 amino acids of the PTP1B binding site, the region of overlap with the β-catenin target, effectively competes for binding of β-catenin but is much less effective in competing PTP1B, whereas two peptides representing the remaining 12 amino acids have no effect on β-catenin binding but effectively compete for PTP1B binding. Introduction into embryonic chick retina cells of a cell-permeable peptide mimicking the 8 most COOH-terminal amino acids in the PTP1B target domain, the region most distant from the β-catenin target site, prevents binding of PTP1B, increases the pool of free, tyrosine-phosphorylated β-catenin, and results in loss of N-cadherin function. N-cadherin lacking this same region of the PTP1B target site does not associate with PTP1B or β-catenin and is not efficiently expressed at the cell surface of transfected L cells. Thus, interaction of PTP1B with N-cadherin is essential for its association with β-catenin, stable expression at the cell surface, and consequently, cadherin function.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Yi Sak Kim ◽  
Prashanta Silwal ◽  
Soo Yeon Kim ◽  
Tamotsu Yoshimori ◽  
Eun-Kyeong Jo

AbstractMycobacterium tuberculosis (Mtb) is a major causal pathogen of human tuberculosis (TB), which is a serious health burden worldwide. The demand for the development of an innovative therapeutic strategy to treat TB is high due to drug-resistant forms of TB. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents and small molecules may be beneficial in restricting intracellular Mtb infection, even with multidrug-resistant Mtb strains. Recent studies have revealed the essential roles of host nuclear receptors (NRs) in the activation of the host defense through antibacterial autophagy against Mtb infection. In particular, we discuss the function of estrogen-related receptor (ERR) α and peroxisome proliferator-activated receptor (PPAR) α in autophagy regulation to improve host defenses against Mtb infection. Despite promising findings relating to the antitubercular effects of various agents, our understanding of the molecular mechanism by which autophagy-activating agents suppress intracellular Mtb in vitro and in vivo is lacking. An improved understanding of the antibacterial autophagic mechanisms in the innate host defense will eventually lead to the development of new therapeutic strategies for human TB.


2019 ◽  
Vol 20 (9) ◽  
pp. 2069 ◽  
Author(s):  
Dmytro Starenki ◽  
Nadiya Sosonkina ◽  
Seung-Keun Hong ◽  
Ricardo V. Lloyd ◽  
Jong-In Park

We previously reported that upregulation of mortalin (HSPA9/GRP75), the mitochondrial HSP70 chaperone, facilitates tumor cell proliferation and survival in human medullary thyroid carcinoma (MTC), proposing mortalin as a novel therapeutic target for MTC. In this report, we show that mortalin is also upregulated in other thyroid tumor types, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC), and that mortalin depletion can effectively induce growth arrest and cell death in human PTC (TPC-1), FTC (FTC133), and ATC (8505C and C643) cells in culture. Intriguingly, mortalin depletion induced varied effects on cell cycle arrest (G0/G1 phase arrest in TPC-1 and C643, G2/M phase arrest in 8505C, and mild G2/M phase arrest with increased sub-G0/G1 population in FTC133) and on the levels of TP53, E2F-1, p21CIP1, p27KIP1, and poly (ADP-ribose) polymerase cleavage in these cells, suggesting that thyroid tumor cells respond to mortalin depletion in a cell type-specific manner. In these cells, we also determined the efficacy of triphenyl-phosphonium-carboxy-proxyl (Mito-CP) because this mitochondria-targeted metabolism interfering agent exhibited similar tumor suppressive effects as mortalin depletion in MTC cells. Indeed, Mito-CP also induced robust caspase-dependent apoptosis in PTC and ATC cell lines in vitro, exhibiting IC50 lower than PLX4032 in 8505C cells and IC50 lower than vandetanib and cabozantinib in TPC-1 cells. Intriguingly, Mito-CP-induced cell death was partially rescued by mortalin overexpression, suggesting that Mito-CP may inactivate a mechanism that requires mortalin function. These findings support the significance of mortalin and mitochondrial activity in a broad spectrum of thyroid cancer.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
James A Rickard ◽  
Holly Anderton ◽  
Nima Etemadi ◽  
Ueli Nachbur ◽  
Maurice Darding ◽  
...  

SHARPIN regulates immune signaling and contributes to full transcriptional activity and prevention of cell death in response to TNF in vitro. The inactivating mouse Sharpin cpdm mutation causes TNF-dependent multi-organ inflammation, characterized by dermatitis, liver inflammation, splenomegaly, and loss of Peyer's patches. TNF-dependent cell death has been proposed to cause the inflammatory phenotype and consistent with this we show Tnfr1, but not Tnfr2, deficiency suppresses the phenotype (and it does so more efficiently than Il1r1 loss). TNFR1-induced apoptosis can proceed through caspase-8 and BID, but reduction in or loss of these players generally did not suppress inflammation, although Casp8 heterozygosity significantly delayed dermatitis. Ripk3 or Mlkl deficiency partially ameliorated the multi-organ phenotype, and combined Ripk3 deletion and Casp8 heterozygosity almost completely suppressed it, even restoring Peyer's patches. Unexpectedly, Sharpin, Ripk3 and Casp8 triple deficiency caused perinatal lethality. These results provide unexpected insights into the developmental importance of SHARPIN.


Sign in / Sign up

Export Citation Format

Share Document