scholarly journals Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel

2021 ◽  
Vol 118 (14) ◽  
pp. e2014694118
Author(s):  
Ya Nan Ye ◽  
Kunpeng Cui ◽  
Wei Hong ◽  
Xueyu Li ◽  
Chengtao Yu ◽  
...  

Tough soft materials usually show strain softening and inelastic deformation. Here, we study the molecular mechanism of abnormally large nonsoftening, quasi-linear but inelastic deformation in tough hydrogels made of hyperconnective physical network and linear polymers as molecular glues to the network. The interplay of hyperconnectivity of network and effective load transfer by molecular glues prevents stress concentration, which is revealed by an affine deformation of the network to the bulk deformation up to sample failure. The suppression of local stress concentration and strain amplification plays a key role in avoiding necking or strain softening and endows the gels with a unique large nonsoftening, quasi-linear but inelastic deformation.

2021 ◽  
Vol 7 (16) ◽  
pp. eabe8210
Author(s):  
Xueyu Li ◽  
Kunpeng Cui ◽  
Takayuki Kurokawa ◽  
Ya Nan Ye ◽  
Tao Lin Sun ◽  
...  

We investigate the fatigue resistance of chemically cross-linked polyampholyte hydrogels with a hierarchical structure due to phase separation and find that the details of the structure, as characterized by SAXS, control the mechanisms of crack propagation. When gels exhibit a strong phase contrast and a low cross-linking level, the stress singularity around the crack tip is gradually eliminated with increasing fatigue cycles and this suppresses crack growth, beneficial for high fatigue resistance. On the contrary, the stress concentration persists in weakly phase-separated gels, resulting in low fatigue resistance. A material parameter, λtran, is identified, correlated to the onset of non-affine deformation of the mesophase structure in a hydrogel without crack, which governs the slow-to-fast transition in fatigue crack growth. The detailed role played by the mesoscale structure on fatigue resistance provides design principles for developing self-healing, tough, and fatigue-resistant soft materials.


Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.


Author(s):  
Chung Yuen Hui ◽  
Zezhou Liu ◽  
Anand Jagota

For a broad class of soft materials their surface stress can strongly influence mechanical behaviour. For example, a line force applied to the surface of an elastic substrate is locally supported by surface stress over an elasto-capillary length l c (surface stress/elastic modulus). Surface stress regularizes the otherwise highly singular stress and strain fields. However, surface such as lipid bilayer interfaces can also resist deformation by bending. This has not been studied either by experiments or theories. We analyse a theoretical model of the response of a half-space to a line force when the surface carries both a stress and resistance to bending. We find that surface bending further regularizes the singular fields. The local stress field near the line load can be separated into three regions. Region 1 occupies distances from the line load smaller than an elasto-capillary bending length l b (bending stiffness/elastic modulus to the 1/3 power) where surface bending dominates and the elastic stress and strains are continuous. Region 2 occupies intermediate distances between l b and l c   ( > l b ) where surface stress dominates. At distances larger than l c we retrieve the classical elasticity solution. The size of region 2 depends on κ = l c / l b and vanishes for small l c .


2000 ◽  
Author(s):  
Hungyu Tsai ◽  
Xinjian Fan

Abstract The axisymmetric elastic deformations in shape memory alloy (SMA) fiber reinforced composites are studied. We analyze the stress concentration near the interface between the fiber and the matrix as a result of a pre-described phase transformation in the active fiber. A typical model involving a single infinite fiber embedded in an infinite elastic matrix is studied. A portion of the fiber is allowed to undergo phase transformation along the axial direction so that its length is changed by the corresponding transformation strain (typically a few percentages), while the matrix is assumed to be linearly elastic and isotropic. Under certain bonding conditions, the deformation of fiber forces the matrix to deform in the elastic regime in order to accommodate the transformation strains. The problem is formulated as axisymmetric deformations coupled with a finite transformation region in the fiber. In order to avoid infinite stresses found under perfect bonding conditions, we adopt a “spring” model which accounts for the elasticity of a transition layer at the interface. This model allows for relative displacements between the fiber and the matrix. A linear relation between this relative displacement and the shear stress is used. The exact elasticity solution (in integral form) to this problem is found using Love’s stress function and Fourier transform. Numerical integration is performed to produce the stress distributions. In particular, the shear load transfer profiles along the interface are calculated for various spring stiffness. It is found that the singularity is eliminated and the stress concentration factor depends on the stiffness of the transition layer.


2016 ◽  
Vol 368 ◽  
pp. 121-125
Author(s):  
Pavel Kejzlar ◽  
Tomáš Pilvousek ◽  
Michal Tregler

The present work deals with determination of the cause of crack occurring in a part of car body manufactured from deep-drawing sheet. UHR-SEM, EDS, EBSD and measurement of microhardness were used for evaluation of the structure, local deformation and crack formation mechanism. A material analysis discovered foreign particles in the material. These particles were identified as MgAl2O4 with BCC lattice. The occurrence of these hard particles led to local stress concentration, decrease in mechanical strength and sheet breach due to tensile stress during deformation.


Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Thomas Chauve ◽  
Maurine Montagnat ◽  
Cedric Lachaud ◽  
David Georges ◽  
Pierre Vacher

Abstract. This paper presents, for the first time, the evolution of the local heterogeneous strain field around intra-granular cracking in polycrystalline ice, at the onset of tertiary creep. Owing to the high homologous temperature conditions and relatively low compressive stress applied, stress concentration at the crack tips is relaxed by plastic mechanisms associated with dynamic recrystallization. Strain field evolution followed by digital image correlation (DIC) directly shows the redistribution of strain during crack opening, but also the redistribution driven by crack tip plasticity mechanisms and recrystallization. Associated local changes in microstructure induce modifications of the local stress field evidenced by crack closure during deformation. At the ductile-to-brittle transition in ice, micro-cracking and dynamic recrystallization mechanisms can co-exist and interact, the later being efficient to relax stress concentration at the crack tips.


2012 ◽  
Vol 12 (01) ◽  
pp. 179-194 ◽  
Author(s):  
TAO CHEN ◽  
QIAN-QIAN YU ◽  
XIANG-LIN GU ◽  
XIAO-LING ZHAO

This paper reports an experimental study on the use of carbon fiber-reinforced polymer (CFRP) sheets to strengthen non-load-carrying cruciform welded joints subjected to fatigue loading. Failure modes and corresponding fatigue lives were recorded during tests. Scatter of test results was observed. Thereafter, a series of numerical analyses were performed to study the effects of weld toe radius, the number of CFRP layers and Young's modulus of reinforced materials on local stress concentration at a weld toe. It was found that fatigue life of such welded connections can be enhanced because of the reduction of stress concentration caused by CFRP strengthening. Parametric study indicates that the weld toe radius and the amount of CFRP are the key parameters influencing the stress concentration factors and stress ranges of the joint. Enhancement of modulus for adhesive and CFRP sheets can also be beneficial to the fatigue performance to some extent.


2014 ◽  
Vol 599-601 ◽  
pp. 385-390 ◽  
Author(s):  
Xue Xi Chen ◽  
Rui Qing Bi ◽  
Wen Guang Jin ◽  
Yong Xu

According to the conventional fracturing could easily lead to the local stress concentration of coal, the effect of pressure relief and permeability improvement is not ideal. The mechanism of directional hydraulic fracturing is analyzed and the parameters such as the layout of directional hole, the fracturing hole sealing, the minimum cracking pressure are discussed, then the field application tests are carried out. The results show that the directional hydraulic fracturing effect is better than that of ordinary fracturing hole and the maximum concentration and the average drainage scalar is respectively 3.75 times and 4 times of the ordinary hole pumping gas fracturing effects. The effect of permeability improvement is remarkable.


2006 ◽  
Author(s):  
M. A. Qidwai ◽  
J. N. Baucom ◽  
A. C. Leung ◽  
J. P. Thomas

We are developing and exploring the concept of in-plane tiling of composite laminates, called MOSAIC, to mitigate or control delamination at free edges due to interlaminar stresses. Initial mechanical testing has shown that MOSAIC composites with uniaxial graphite-fiber reinforced tiles retain the stiffness levels of traditional uniaxially reinforced composites but with reduced strength. The reduction in strength is attributed to the formation of resin-rich pockets between adjacent tiles. In this study, we have performed detailed finite element analyses to identify the critical design parameters that affect the mechanical performance of uniaxially reinforced MOSAIC composites. We have found that using continuous laminae on the outer surfaces significantly increases the overall loadcarrying capacity. Increasing aspect ratio of the pocket and decreasing material property differences between resin and tiles also cause better load transfer between tiles but may not necessarily improve overall strength due to increasing stress concentration. The tiling scheme and density of pocket placement influence the interaction of local stress concentrations. Consequently, a novel composite joint is proposed and found to have superior performance.


Author(s):  
Hiroaki Eto ◽  
Koji Iizuka ◽  
Ryo Nishigochi ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
...  

Abstract Indonesia is a main country supplying coal in the Asia-Pacific region, it is important to ensure a stable coal supply to Japan. Because the topography of the seabed near East Kalimantan Island, Indonesia’s main coal production area, is shallow, it is difficult for bulk carriers to reach the coast. Therefore, Large-Scale Floating Coal Transshipment Station (LFTS) was proposed, which will be used as a relay base between coal-barging barges from land and bulk carriers offshore. Installing an LFTS offshore from East Kalimantan is expected to improve coal transport productivity. LFTS can store coal equivalent to five times the capacity of one bulk carrier (total 500,000T), and can accommodate 2 bulk carriers at the same time during offloading. The scale of LFTS is 590m × 160m. The LFTS has a flat spread and the elastic behavior becomes the dominant Structure. The upper part of the LFTS is different rigidity partly because the partition wall to be loaded by dividing the coal into each quality is provided. Loaded coal not only changes the draft of the LFTS but also greatly deforms the LFTS and is expected to cause local stress concentration on the structural members. Therefore, this paper investigates wave response characteristics and stress characteristics with the coal loading of the LFTS, and then evaluation of structural strength by limit state design method. In this study, linear potential theory and the finite element method (FEM) were used to analyze the static hydroelastic motion under various coal loading condition and wave response of LFTS. And, to grasp the local stress concentration occurring inside the LFTS by using the response results, a detailed model modeling a complicated internal structure was prepared. Zooming analysis which is a method of giving the deformation result by the whole model of LFTS as forced displacement to the local detailed model was carried out. As a result, depending on the coal loading condition and wave conditions, it became clear that LFTS will be in a tough situation.


Sign in / Sign up

Export Citation Format

Share Document