An Optimization Design Platform for Fir-Tree Root and Groove for Steam Turbine

Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.

Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 927-934
Author(s):  
Tao Song ◽  
Chao Liu ◽  
Hengxuan Zhu ◽  
Min Zeng ◽  
Jin Wang

Abstract Normal operation of gas turbines will be affected by deposition on turbine blades from particles mixed in fuels. This research shows that it is difficult to monitor the mass of the particles deposition on the wall surface in real time. With development of electronic technology, the antenna made of printed circuit board (PCB) has been widely used in many industrial fields. Microstrip antenna is first proposed for monitoring particles deposition to analyse the deposition law of the particles accumulated on the wall. The simulation software Computer Simulation Technology Microwave Studio (CST MWS) 2015 is used to conduct the optimization design of the PCB substrate antenna. It is found that the S11 of vivaldi antenna with arc gradient groove exhibits a monotonous increase with the increase of dielectric layer thickness, and this antenna is highly sensitive to the dielectric layer thickness. Moreover, a cold-state test is carried out by using atomized wax to simulate the deposition of pollutants. A relationship as a four number of times function is found between the capacitance and the deposited mass. These results provide an important reference for the mass detection of the particle deposition on the wall, and this method is suitable for other related engineering fields.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


Author(s):  
Joerg Schuerhoff ◽  
Andrei Ghicov ◽  
Karsten Sattler

Blades for low pressure steam turbines operate in flows of saturated steam containing water droplets. The water droplets can impact rotating last stage blades mainly on the leading edge suction sides with relative velocities up to several hundred meters per second. Especially on large blades the high impact energy of the droplets can lead to a material loss particularly at the inlet edges close to the blade tips. This effect is well known as “water droplet erosion”. The steam turbine manufacturer use several techniques, like welding or brazing of inlays made of erosion resistant materials to reduce the material loss. Selective, local hardening of the blade leading edges is the preferred solution for new apparatus Siemens steam turbines. A high protection effect combined with high process stability can be ensured with this Siemens hardening technique. Furthermore the heat input and therewith the geometrical change potential is relatively low. The process is flexible and can be adapted to different blade sizes and the required size of the hardened zones. Siemens collected many years of positive operational experience with this protection measure. State of the art turbine blades often have to be developed with precipitation hardening steels and/or a shroud design to fulfill the high operational requirements. A controlled hardening of the inlet edges of such steam turbine blades is difficult if not impossible with conventional methods like flame hardening. The Siemens steam turbine factory in Muelheim, Germany installed a fully automated laser treatment facility equipped with two co-operating robots and two 6 kW high power diode laser to enable the in-house hardening of such blades. Several blade designs from power generation and industrial turbines were successfully laser treated within the first year in operation. This paper describes generally the setup of the laser treatment facility and the application for low pressure steam turbine blades made of precipitation hardening steels and blades with shroud design, including the post laser heat treatments.


Author(s):  
Yasushi Hara ◽  
Katsura Matsubara ◽  
Ken-ichi Mizuno ◽  
Toru Shimamori ◽  
Hiro Yoshida

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1350 °C in accordance with the project goals, we developed two silicon nitride materials with further improved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. On applying these silicon nitride ceramics to CGT engine, we evaluated various properties of silicon nitride materials considering the environment in CGT engine. Particle impact testing is one of those evaluations. Materials used in CGT engine are exposed in high speed gas flow, and impact damage of these materials is considered to be a concern. We tested ST-1 in the particle impact test. In this test, we observed fracture modes, and estimated the critical impact velocity. This paper summarizes the development of silicon nitride components, and the result of evaluations of these silicon nitride materials.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

With the tremendous role played by steam turbines in power generation cycle, it is essential to understand the flow field of condensing steam flow in a steam turbine to design an energy efficient turbine because condensation at low pressure (LP) turbine introduces extra losses, and erosion in turbine blades. The turbulence has a leading role in condensing phenomena which involve a rapid change of mass, momentum and heat transfer. The paper presents the influence of turbulence modelling on non-equilibrium condensing steam flows in a LP steam turbine stage adopting CFD code. The simulations were conducted using the Eulerian-Eulerian approach, based on Reynolds-averaged Navier-Stokes equations coupled with a two equation turbulence model, which is included with nucleation and droplet growth model for the liquid phase. The SST k-ω model was modified, and the modifications were implemented in the CFD code. First, the performance of the modified model is validated with nozzles and turbine cascade cases. The effect of turbulence modelling on the wet-steam properties and the loss mechanism for the 3D stator-rotor stage is discussed. The presented results show that an accurate computational prediction of condensing steam flow requires the turbulence to be modelled accurately.


1995 ◽  
Vol 117 (1) ◽  
pp. 152-155 ◽  
Author(s):  
P. N. Walsh ◽  
J. M. Quets ◽  
R. C. Tucker

Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun™ coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.


2021 ◽  
Vol 1039 ◽  
pp. 281-296
Author(s):  
Adnan A. Ugla ◽  
Mushtaq Ismael Hasan ◽  
Zainalabden A. Ibrahim ◽  
Dhuha J. Kamil

Heat resistant coatings are considered for the external surface Low-Pressure Steam Turbines (LPST). 410 stainless steel covered with nano heat resistant coatings consists of a heat resistant connecting layer enhanced by nanoparticles. A commercial paint was modified by using 20%wt of (titanium dioxide (TiO2) - aluminum oxide (Al2O3)) with different concentrations range (25,50,75wt% of TiO2) layers. These nano-coatings paints were airbrushed onto the surface of specimens of steam turbine blades. The test rig and experimental apparatus have been fabricated and collected to accomplish the thermal tests. The samples were subjected to heat resistance and a temperature test approximately similar to the steam turbine's operation condition temperature. The test results are used to choose the nano-coating layer with a concentration that ensures a composition's highest protective properties. The test sample with concentration (paint-(75% Al2O3+25% TiO2)) showed the highest thermal properties compares with the other cases.


Author(s):  
Vladimir Grabovskii ◽  

A comparative quantitative assessment of the damage and residual life of the shaft line elements for differ-ent types of high-power steam turbines at the end of their design life is made by mathematical modeling. The analysis covers all elements of the shaft line: from the steam turbine Central pump to the turbine generator ex-citer. The simulated circuit includes turbo generators, transformers, gate converters, AC and DC power lines. When modeling, an approach is used from the position of proper coordinates, which provides maximum meth-odological consistency of the models of the listed devices and allows you to directly reproduce electromagnetic and mechanical transients with the determination of instantaneous values of currents, voltages, electromagnet-ic and torsional moments. To estimate damage, we used the deformation criterion for soft and hard loads in the zone of low-cycle and force criterion in the zone of multi-cycle fatigue. The influence of the number of starts and running time of a steam turbine on the damage and residual life of its shaft elements is studied. When de-termining the remaining life, in addition to starts, other abnormal operating modes of the turbo generator were taken into account during the turbine operating time: short circuits and their disconnections, unsuccessful high-speed automatic re-activation, subsynchronous resonance due to both the operation of the control system of the PPT and the automatic generator excitation regulator. The influence of attenuation of electromagnetic transients in the generator and damping of torsional vibrations on the degree of reduction of the residual life of the shaft elements is analyzed. The results obtained can be used for a comprehensive solution of the issue of further operation of steam turbines that have spent their design life.


2019 ◽  
Vol 36 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jingjing Huang ◽  
Longxi Zheng ◽  
Chris K Mechefske ◽  
Bingbing Han

Abstract Based on rotor dynamics theory, a two-disk flexible rotor system representing an aero-engine with freely supported structure was established with commercial software ANSYS. The physical model of the two-disk rotor system was then integrated to the multidisciplinary design optimization software ISIGHT and the maximum vibration amplitudes experienced by the two disks when crossing the first critical speed were optimized using a multi-island genetic algorithm (MIGA). The optimization objective was to minimize the vibration amplitudes of the two disks when crossing the first critical speed. The position of disk 1 was selected as the optimization variable. The optimum position of disk 1 was obtained at the specified constraint that the variation of the first critical speed could not exceed the range of ±10 %. In order to validate the performance of the optimization design, the proof-of-transient experiments were conducted based on a high-speed flexible two-disk rotor system. Experimental results indicated that the maximum vibration amplitude of disk 1 when crossing the first critical speed declined by 60.9 % and the maximum vibration amplitude of disk 2 fell by 63.48 % after optimization. The optimization method found the optimum rotor positions of the flexible rotor system which resulted in minimum vibration amplitudes.


Sign in / Sign up

Export Citation Format

Share Document