scholarly journals Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge

2020 ◽  
Vol 117 (47) ◽  
pp. 29904-29913 ◽  
Author(s):  
Paola Tognini ◽  
Muntaha Samad ◽  
Kenichiro Kinouchi ◽  
Yu Liu ◽  
Jean-Christophe Helbling ◽  
...  

Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.

Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1347-1354 ◽  
Author(s):  
Hitoshi Ando ◽  
Masafumi Kumazaki ◽  
Yuya Motosugi ◽  
Kentarou Ushijima ◽  
Tomohiro Maekawa ◽  
...  

Abstract Recent studies have demonstrated relationships between the dysfunction of circadian clocks and the development of metabolic abnormalities, but the chicken-and-egg question remains unresolved. To address this issue, we investigated the cause-effect relationship in obese, diabetic ob/ob mice. Compared with control C57BL/6J mice, the daily mRNA expression profiles of the clock and clock-controlled genes Clock, Bmal1, Cry1, Per1, Per2, and Dbp were substantially dampened in the liver and adipose tissue, but not the hypothalamic suprachiasmatic nucleus, of 10-wk-old ob/ob mice. Four-week feeding of a low-calorie diet and administration of leptin over a 7-d period attenuated, to a significant and comparable extent, the observed metabolic abnormalities (obesity, hyperglycemia, hyperinsulinemia, and hypercholesterolemia) in the ob/ob mice. However, only leptin treatment improved the impaired peripheral clocks. In addition, clock function, assessed by measuring levels of Per1, Per2, and Dbp mRNA at around peak times, was also reduced in the peripheral tissues of 3-wk-old ob/ob mice without any overt metabolic abnormalities. Collectively these results indicate that the impairment of peripheral clocks in ob/ob mice does not result from metabolic abnormalities but may instead be at least partially caused by leptin deficiency itself. Further studies are needed to clarify how leptin deficiency affects peripheral clocks.


2017 ◽  
Vol 158 (24) ◽  
pp. 929-937
Author(s):  
Krisztián Kovács ◽  
Barna Vásárhelyi ◽  
Katalin Mészáros ◽  
Attila Patócs ◽  
Gellért Karvaly

Abstract: Considerable knowledge has been gathered on the physiological role of estrogens. However, fairly little information is available on the role of compounds produced in the breakdown process of estrone and estradiol wich may play a role in various diseases associated with estrogen impact. To date, approximately 15 extragonadal estrogen-related compounds have been identified. These metabolites may exert protective, or, instead, pro-inflammatory and/or pro-oncogenic activity in a tissue-specific manner. Systemic and local estrogen metabolite levels are not necesserily correlated, which may promote the diagnostic significance of the locally produced estrogen metabolites in the future. The aim of the present study is a bibliographic review of the extragonadal metabolome in peripheral tissues, and to highlight the role of the peripheral tissue homeostasis of estrogens as well as the non-hormonal biological activity and clinical significance of the estrogen metabolome. Orv Hetil. 2017; 158(24): 929–937.


2019 ◽  
Vol 74 ◽  
pp. 121-134 ◽  
Author(s):  
Sarah J. Spencer ◽  
Bashirah Basri ◽  
Luba Sominsky ◽  
Alita Soch ◽  
Monica T. Ayala ◽  
...  

Author(s):  
Paul de Goede ◽  
Satish Sen ◽  
Yan Su ◽  
Ewout Foppen ◽  
Vincet-Joseph Poirel ◽  
...  

Restricted feeding is well known to affect expression profiles of both clock and metabolic genes. However, it is unknown whether these changes in metabolic gene expression result from changes in the molecular clock or in feeding behavior. Here we eliminated the daily rhythm in feeding behavior by providing 6-meals evenly distributed over the light/dark-cycle. Animals on this 6-meals-a-day feeding schedule retained the normal day/night difference in physiological parameters including body temperature and locomotor activity. The daily rhythm in respiratory exchange ratio (RER), however, was significantly phase-shifted through increased utilization of carbohydrates during the light phase and increased lipid oxidation during the dark phase. This 6-meals-a-day feeding schedule did not have a major impact on the clock gene expression rhythms in the master clock but did have mild effects on peripheral clocks. By contrast, genes involved in glucose and lipid metabolism showed differential expression. Concluding, eliminating the daily rhythm in feeding behavior in rats does not affect the master clock and only mildly affects peripheral clocks, but disturbs metabolic rhythms in liver, skeletal muscle and brown adipose tissue in a tissue-dependent manner. Thereby a clear daily rhythm in feeding behavior strongly regulates timing of peripheral metabolism, separately from circadian clocks.


2017 ◽  
Vol 595 (6) ◽  
pp. 1859-1860 ◽  
Author(s):  
Letícia F. Terra ◽  
Aline R. M. Lobba

2013 ◽  
Vol 65 ◽  
pp. 34-35
Author(s):  
Halina Car ◽  
Anna Fiedorowicz ◽  
Sławomir Prokopiuk ◽  
Małgorzata Żendzian-Piotrowska

2012 ◽  
Vol 44 (11) ◽  
pp. 607-621 ◽  
Author(s):  
Panteleimon D. Mavroudis ◽  
Jeremy D. Scheff ◽  
Steve E. Calvano ◽  
Stephen F. Lowry ◽  
Ioannis P. Androulakis

Circadian rhythmicity in mammals is primarily driven by the suprachiasmatic nucleus (SCN), often called the central pacemaker, which converts the photic information of light and dark cycles into neuronal and hormonal signals in the periphery of the body. Cells of peripheral tissues respond to these centrally mediated cues by adjusting their molecular function to optimize organism performance. Numerous systemic cues orchestrate peripheral rhythmicity, such as feeding, body temperature, the autonomic nervous system, and hormones. We propose a semimechanistic model for the entrainment of peripheral clock genes by cortisol as a representative entrainer of peripheral cells. This model demonstrates the importance of entrainer's characteristics in terms of the synchronization and entrainment of peripheral clock genes, and predicts the loss of intercellular synchrony when cortisol moves out of its homeostatic amplitude and frequency range, as has been observed clinically in chronic stress and cancer. The model also predicts a dynamic regime of entrainment, when cortisol has a slightly decreased amplitude rhythm, where individual clock genes remain relatively synchronized among themselves but are phase shifted in relation to the entrainer. The model illustrates how the loss of communication between the SCN and peripheral tissues could result in desynchronization of peripheral clocks.


2019 ◽  
Vol 20 (21) ◽  
pp. 5266 ◽  
Author(s):  
Klieser ◽  
Mayr ◽  
Kiesslich ◽  
Wissniowski ◽  
Fazio ◽  
...  

The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle–high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document