scholarly journals High-fat diet and fish oil affect adipocyte metabolism in a depot-specific manner

2017 ◽  
Vol 595 (6) ◽  
pp. 1859-1860 ◽  
Author(s):  
Letícia F. Terra ◽  
Aline R. M. Lobba
2016 ◽  
Vol 60 (11) ◽  
pp. 2493-2504 ◽  
Author(s):  
Lorraine S. Oliveira ◽  
Luana L. Souza ◽  
Aline F. P. Souza ◽  
Aline Cordeiro ◽  
George E. G. Kluck ◽  
...  

2013 ◽  
Vol 91 (11) ◽  
pp. 960-965 ◽  
Author(s):  
Kelby Cleverley ◽  
Xiaozhou Du ◽  
Sheena Premecz ◽  
Khuong Le ◽  
Matthew Zeglinski ◽  
...  

Owing to their spontaneous development of atherosclerosis, apolipoprotein E knockout mice (ApoEKO) are one of the best studied animal models for this disease. Little is known about the utility of various omega-3 fatty acid regimens, in particular fish oils, in preventing cardiac disease in ApoEKO mice. The purpose of this study was to determine the cardiovascular effects of omega-3 fatty acid supplementation with either safflower oil (control), fish oil, flaxseed oil, or designed oil in ApoEKO mice fed a high-fat diet for a total of 16 weeks. In-vivo cardiac function was assessed weekly using murine echocardiography. Blood pressure, plasma lipid levels, and brain natriuretic peptide (BNP) were serially measured. The results show that ApoEKO mice fed fish oil demonstrated an increase in left ventricular wall thickness as a result of increased afterload. Despite chronic treatment with fish oil over 16 weeks, blood pressure increased in ApoEKO mice by 20% compared with the baseline. Both echocardiographic evidence of left ventricular hypertrophy and biochemical increase in BNP levels confirmed diastolic dysfunction in ApoEKO mice fed fish oil. This suggests that high-fat diet supplemented with fish oil may lead to adverse cardiovascular effects in ApoE deficient mice.


2014 ◽  
Vol 112 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Ruifang Sun ◽  
Xiaoming Wang ◽  
Yan Liu ◽  
Min Xia

Diets supplemented with fish oil (FO), which is rich in n-3 PUFA, have been shown to modify several key risk factors for CVD. The purpose of the present study was to determine the effect of FO supplementation on mitochondrial dynamic protein expression in the endothelium and on endothelial cell function. Male apoE-deficient (apoE− / −) mice (8 weeks old, n 12 per group) were fed a high-fat diet containing 45 % fat (HFD group) or a HFD with partial replacement of lard with 10 % (w/w) FO (FO group) (total EPA and DHA content 64·1 g/kg) for 8 weeks. ApoE− / − mice in the FO group had a greater endothelium-dependent vasorelaxation response to acetylcholine (Ach) than those in the HFD group. The atherosclerotic lesion volume in the aortic sinus of mice in the FO group was 54 % lower than that in the HFD group (P< 0·01). In addition, the aortas isolated from mice in the FO group had higher expression levels of Mfn2 and Opa1 but lower expression levels of Fis1 than those from the HFD group. Compared with mice fed the HFD, those fed the FO diet showed significantly lower levels of mitochondrial oxidative stress, cytochrome c release and caspase-3 activity (each P< 0·05). Furthermore, FO-fed mice displayed increased NO release and availability and enhanced endothelial NO synthase activity compared with HFD-fed mice. Taken together, these results reveal a novel mechanism by which FO protects against endothelial cell dysfunction, which may result in improved mitochondrial dynamics.


2019 ◽  
Vol 74 ◽  
pp. 121-134 ◽  
Author(s):  
Sarah J. Spencer ◽  
Bashirah Basri ◽  
Luba Sominsky ◽  
Alita Soch ◽  
Monica T. Ayala ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186216 ◽  
Author(s):  
Chenxi Cui ◽  
Yanyan Li ◽  
Hang Gao ◽  
Hongyan Zhang ◽  
Jiaojiao Han ◽  
...  

2019 ◽  
Vol 150 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Jay J Cao ◽  
Brian R Gregoire ◽  
Kim G Michelsen ◽  
Matthew J Picklo

ABSTRACT Background Intake of total fat is linked to obesity and inversely associated with bone density in humans. Epidemiologic and animal studies show that long-chain n–3 (ω-3) PUFAs supplied as fish oil (FO) are beneficial to skeletal health. Objective This study tested the hypothesis that increasing dietary FO would decrease adiposity and improve bone-related outcomes in growing obese mice. Methods Male C57BL/6 mice at 6 wk old were assigned to 6 treatment groups and fed either a normal-fat diet (3.85 kcal/g and 10% energy as fat) or a high-fat diet (HF; 4.73 kcal/g and 45% energy as fat) containing either 0%, 3%, or 9% energy as FO (0FO, 3FO, and 9FO, respectively) ad libitum for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. Results The HF diet increased the expression of the adipose tissue tumor necrosis factor α (Tnfa) and serum concentrations of leptin and tartrate-resistant acid phosphatase (TRAP), and decreased serum concentrations of osteocalcin and bone-specific alkaline phosphatase (P &lt; 0.05). FO decreased fat mass (P &lt; 0.05), serum TRAP (P &lt; 0.05), and adipose tissue Tnfa expression (P &lt; 0.01). Bone content of long-chain n–3 PUFAs was increased and n–6 PUFAs were decreased with the elevation in dietary FO content (P &lt; 0.01). Compared with mice fed 9FO, animals fed 3FO had higher femoral bone volume/total volume (25%), trabecular number (23%), connectivity density (82%), and bone mass of second lumbar vertebrae (12%) and lower femoral trabecular separation (−19%). Mice fed the 3FO HF diet had 42% higher bone mass than those fed the 0FO HF diet. Conclusions These data indicate increasing dietary FO ≤3% energy can decrease adiposity and mitigate HF diet–induced bone deterioration in growing C57BL/6 mice possibly by reducing inflammation and bone resorption. FO at 9% diet energy had no further beneficial effects on bone of obese mice.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1525-1525
Author(s):  
Kyung-Ah Kim ◽  
Shalom Sara Thomas ◽  
Youn-Soo Cha

Abstract Objectives The incidence of inflammatory bowel disease is increasing in newly developing countries, mainly awing to the westernization of the society. Consumption of high-fat diet has known to aggravate colitis. Omega-3 fatty acids are known to have several health benefits including anti-inflammatory effects and some studies have reported the effect of fish oil in experimental colitis. Perilla oil is obtained from the seeds of Perilla frutescens and is known to exert protective effects against obesity, inflammation and hepatic steatosis. We have previously shown that perilla oil has a similar effect like fish oil in high-fat diet induced colon inflammation. In this study, we wanted to investigate the effect fish oil and perilla oil on high-fat-fed, dextran sodium sulfate (DSS)-induced colitis in mice. Methods Six weeks old mice were divided into 4 groups; normal diet without DSS administration (ND), and three high-fat diet with DSS groups; control (HD + DSS), with fish oil supplementation (HDFO+DSS), with perilla oil supplementation (HDPO+DSS). The mice were fed with high-fat diet for 5 weeks prior to DSS administration by water for one week. The mice were sacrificed on the 7th day of DSS administration. Colon length and macroscopic score were measured. The levels of pro-inflammatory cytokines in serum were measured. The stools of the mice were collected for microbial analysis. Results The levels of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β were significantly reduced in FO and PO supplemented groups compared to HD + DSS. The colon length was reduced due to DSS administration compared to ND, and supplementation with FO and PO improved colon length and macroscopic score. Number of Enterobacteriaceae was higher in all DSS administered groups. However, FO and PO treated groups had significantly reduced Enterobacteriaceae. Conclusions The results of this study showed that fish oil and perilla oil exert protective effect against high-fat diet fed DSS-induced colitis. Both fish oil and perilla oil action on colon protection is similar. The experiments to confirm the mechanism of action which includes mRNA and protein analysis are ongoing. Funding Sources This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education).


Sign in / Sign up

Export Citation Format

Share Document