scholarly journals The imprinted lncRNA Peg13 regulates sexual preference and the sex-specific brain transcriptome in mice

2021 ◽  
Vol 118 (10) ◽  
pp. e2022172118
Author(s):  
Maryam Keshavarz ◽  
Diethard Tautz

Mammalian genomes include many maternally and paternally imprinted genes. Most of these are also expressed in the brain, and several have been implicated in regulating specific behavioral traits. Here, we have used a knockout approach to study the function of Peg13, a gene that codes for a fast-evolving lncRNA (long noncoding RNA) and is part of a complex of imprinted genes on chromosome 15 in mice and chromosome 8 in humans. Mice lacking the 3′ half of the transcript look morphologically wild-type but show distinct behavioral differences. They lose interest in the opposite sex, instead displaying a preference for wild-type animals of the same sex. Further, they show a higher level of anxiety, lowered activity and curiosity, and a deficiency in pup retrieval behavior. Brain RNA expression analysis reveals that genes involved in the serotonergic system, formation of glutamatergic synapses, olfactory processing, and estrogen signaling—as well as more than half of the other known imprinted genes—show significant expression changes in Peg13-deficient mice. Intriguingly, these pathways are differentially affected in the sexes, resulting in male and female brains of Peg13-deficient mice differing more from each other than those of wild-type mice. We conclude that Peg13 is part of a developmental pathway that regulates the neurobiology of social and sexual interactions.

2020 ◽  
Author(s):  
Maryam Keshavarz ◽  
Diethard Tautz

AbstractMammalian genomes include many maternally or paternally imprinted genes. Most of these are also expressed in the brain and several were previously implicated in regulating specific behavioral traits. We have used here a knockout approach to study the function of Peg13. Peg13 codes for a fast evolving lncRNA and is part of a complex of imprinted genes on chromosome 15 in the mouse and chromosome 8 in humans. Two knockout constructs were analyzed, one with a full deletion of the gene, the other with a deletion of the 3’-half. The full deletion is semi lethal, while the partial deletion is fully viable, but the mice show distinctive behavioral differences. They lose interest in the opposite sex and show instead a preference for wildtype animals of the same sex. Further, they show a higher level of anxiety, as well as lowered activity and curiosity and females have a deficiency in pup retrieval behavior. Brain RNA expression analysis reveals that genes involved in the serotonergic system, formation of glutamergic synapses, olfactory processing and estrogen signaling, as well as more than half of the other known imprinted genes are affected in Peg13 deficient mice. Intriguingly, the pathways are differentially affected in the sexes, with the result that the male and female brains of Peg13 deficient mice differ more from each other than those of wildtype mice. We conclude that Peg13 is part of a developmental pathway that regulates the neurobiology of social interactions.


2010 ◽  
Vol 207 (12) ◽  
pp. 2581-2594 ◽  
Author(s):  
Letetia Jones ◽  
Guangwei Wei ◽  
Sabina Sevcikova ◽  
Vernon Phan ◽  
Sachi Jain ◽  
...  

Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia (AML). It has been hypothesized that gain of the MYC protooncogene is of central importance in trisomy 8, but the experimental data to support this are limited and controversial. In a mouse model of promyelocytic leukemia in which the MRP8 promoter drives expression of the PML-RARA fusion gene in myeloid cells, a Myc allele is gained in approximately two-thirds of cases as a result of trisomy for mouse chromosome 15. We used this model to test the idea that MYC underlies acquisition of trisomy in AML. We used a retroviral vector to drive expression of wild-type, hypermorphic, or hypomorphic MYC in bone marrow that expressed the PML-RARA transgene. MYC retroviruses cooperated in myeloid leukemogenesis and suppressed gain of chromosome 15. When the PML-RARA transgene was expressed in a Myc haploinsufficient background, we observed selection for increased copies of the wild-type Myc allele concomitant with leukemic transformation. In addition, we found that human myeloid leukemias with trisomy 8 have increased MYC. These data show that gain of MYC can contribute to the pathogenic effect of the most common trisomy of human AML.


2001 ◽  
Vol 120 (5) ◽  
pp. A728-A728
Author(s):  
D CHEN ◽  
L FRIISHANSEN ◽  
X WANG ◽  
C ZHAO ◽  
H WALDUM ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2012 ◽  
Vol 117 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Willem-Jan M. Schellekens ◽  
Hieronymus W. H. van Hees ◽  
Michiel Vaneker ◽  
Marianne Linkels ◽  
P. N. Richard Dekhuijzen ◽  
...  

Background Mechanical ventilation induces diaphragm muscle atrophy, which plays a key role in difficult weaning from mechanical ventilation. The signaling pathways involved in ventilator-induced diaphragm atrophy are poorly understood. The current study investigated the role of Toll-like receptor 4 signaling in the development of ventilator-induced diaphragm atrophy. Methods Unventilated animals were selected for control: wild-type (n = 6) and Toll-like receptor 4 deficient mice (n = 6). Mechanical ventilation (8 h): wild-type (n = 8) and Toll-like receptor 4 deficient (n = 7) mice.Myosin heavy chain content, proinflammatory cytokines, proteolytic activity of the ubiquitin-proteasome pathway, caspase-3 activity, and autophagy were measured in the diaphragm. Results Mechanical ventilation reduced myosin content by approximately 50% in diaphragms of wild-type mice (P less than 0.05). In contrast, ventilation of Toll-like receptor 4 deficient mice did not significantly affect diaphragm myosin content. Likewise, mechanical ventilation significantly increased interleukin-6 and keratinocyte-derived chemokine in the diaphragm of wild-type mice, but not in ventilated Toll-like receptor 4 deficient mice. Mechanical ventilation increased diaphragmatic muscle atrophy factor box transcription in both wild-type and Toll-like receptor 4 deficient mice. Other components of the ubiquitin-proteasome pathway and caspase-3 activity were not affected by ventilation of either wild-type mice or Toll-like receptor 4 deficient mice. Mechanical ventilation induced autophagy in diaphragms of ventilated wild-type mice, but not Toll-like receptor 4 deficient mice. Conclusion Toll-like receptor 4 signaling plays an important role in the development of ventilator-induced diaphragm atrophy, most likely through increased expression of cytokines and activation of lysosomal autophagy.


2004 ◽  
Vol 287 (3) ◽  
pp. H1141-H1148 ◽  
Author(s):  
Jon J. Andresen ◽  
Frank M. Faraci ◽  
Donald D. Heistad

MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD−/− mice die soon after birth, and MnSOD+/− mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD+/− mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2α (PGF2α), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD+/− mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2α and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD+/− mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD+/− mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD+/− mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2α similarly in aortas of WT and MnSOD+/− mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD+/− mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 840
Author(s):  
Qiaofeng Zhao ◽  
Satoshi Koyama ◽  
Nagisa Yoshihara ◽  
Atsushi Takagi ◽  
Etsuko Komiyama ◽  
...  

We recently discovered a nonsynonymous variant in the coiled-coil alpha-helical rod protein 1 (CCHCR1) gene within the alopecia areata (AA) risk haplotype. We also reported that the engineered mice with this risk allele exhibited. To investigate more about the involvement of the CCHCR1 gene in AA pathogenesis, we developed an AA model using C57BL/6N cchcr1 gene knockout mice. In this study, mice (6–8 weeks) were divided into two groups: cchcr1−/− mice and wild-type (WT) littermates. Both groups were subjected to a water avoidance stress (WAS) test. Eight weeks after the WAS test, 25% of cchcr1−/− mice exhibited non-inflammatory foci of alopecia on the dorsal skin. On the other hand, none of wild-type littermates cause hair loss. The foci resembled human AA in terms of gross morphology, trichoscopic findings and histological findings. Additionally, gene expression microarray analysis of cchcr1−/− mice revealed abnormalities of hair related genes compared to the control. Our results strongly suggest that CCHCR1 is associated with AA pathogenesis and that cchcr1−/− mice are a good model for investigating AA.


2011 ◽  
Vol 208 (8) ◽  
pp. 1683-1694 ◽  
Author(s):  
Joyce Wei ◽  
P’ng Loke ◽  
Xingxing Zang ◽  
James P. Allison

B7x, an inhibitory member of the B7/CD28 superfamily, is highly expressed in a broad range of nonhematopoietic organs, suggesting a role in maintaining peripheral tolerance. As endogenous B7x protein is expressed in pancreatic islets, we investigated whether the molecule inhibits diabetogenic responses. Transfer of disease-inducing BDC2.5 T cells into B7x-deficient mice resulted in a more aggressive form of diabetes than in wild-type animals. This exacerbation of disease correlated with higher frequencies of islet-infiltrating Th1 and Th17 cells. Conversely, local B7x overexpression inhibited the development of autoimmunity, as crossing diabetes-susceptible BDC2.5/B6g7 mice to animals overexpressing B7x in pancreatic islets abrogated disease induction. This protection was caused by the inhibition of IFN-γ production by CD4 T cells and not to a skewing or expansion of Th2 or regulatory T cells. The suppressive function of B7x was also supported by observations from another autoimmune model, experimental autoimmune encephalomyelitis, in which B7x-deficient mice developed exacerbated disease in comparison with wild-type animals. Analysis of central nervous system–infiltrating immune cells revealed that the loss of endogenous B7x resulted in expanded Th1 and Th17 responses. Data from these two autoimmune models provide evidence that B7x expression in the periphery acts as an immune checkpoint to prevent tissue-specific autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document