scholarly journals Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions

2021 ◽  
Vol 118 (14) ◽  
pp. e2100240118 ◽  
Author(s):  
Akil Hamza ◽  
Leanne Amitzi ◽  
Lina Ma ◽  
Maureen R. M. Driessen ◽  
Nigel J. O'Neil ◽  
...  

Genetic screens can identify synthetic lethal (SL) interactions and uncover potential anticancer therapeutic targets. However, most SL screens have utilized knockout or knockdown approaches that do not accurately mimic chemical inhibition of a target protein. Here, we test whether missense mutations can be utilized as a model for a type of protein inhibition that creates a dominant gain-of-function cytotoxicity. We expressed missense mutations in the FEN1 endonuclease and the replication-associated helicase, CHL1, that inhibited enzymatic activity but retained substrate binding, and found that these mutations elicited a dominant SL phenotype consistent with the generation of cytotoxic protein–DNA or protein–protein intermediates. Genetic screens with nuclease-defective hFEN1 and helicase-deficient yCHL1 captured dominant SL interactions, in which ectopic expression of the mutant form, in the presence of the wild-type form, caused SL in specific mutant backgrounds. Expression of nuclease-defective hFEN1 in yeast elicited DNA binding-dependent dominant SL with homologous recombination mutants. In contrast, dominant SL interactions with helicase-deficient yCHL1 were observed in spindle-associated, Ctf18-alternative replication factor C (Ctf18-RFC) clamp loader complex, and cohesin mutant backgrounds. These results highlight the different mechanisms underlying SL interactions that occur in the presence of an inhibited form of the target protein and point to the utility of modeling trapping mutations in pursuit of more clinically relevant SL interactions.

2020 ◽  
Author(s):  
Shikha S. Sheth ◽  
Danielle R. Cook ◽  
Samantha D. Strasser ◽  
Timothy D. Martin ◽  
Sneha Menon ◽  
...  

Genetics ◽  
2020 ◽  
Vol 214 (4) ◽  
pp. 869-893 ◽  
Author(s):  
Tatsuya Tsukamoto ◽  
Micah D. Gearhart ◽  
Seongseop Kim ◽  
Gemechu Mekonnen ◽  
Caroline A. Spike ◽  
...  

Mutations affecting spliceosomal proteins are frequently found in hematological malignancies, including myelodysplastic syndromes and acute myeloid leukemia (AML). DDX41/Abstrakt is a metazoan-specific spliceosomal DEAD-box RNA helicase that is recurrently mutated in inherited myelodysplastic syndromes and in relapsing cases of AML. The genetic properties and genomic impacts of disease-causing missense mutations in DDX41 and other spliceosomal proteins have been uncertain. Here, we conduct a comprehensive analysis of the Caenorhabditis elegans DDX41 ortholog, SACY-1. Biochemical analyses defined SACY-1 as a component of the C. elegans spliceosome, and genetic analyses revealed synthetic lethal interactions with spliceosomal components. We used the auxin-inducible degradation system to analyze the consequence of SACY-1 depletion on the transcriptome using RNA sequencing. SACY-1 depletion impacts the transcriptome through splicing-dependent and splicing-independent mechanisms. Altered 3′ splice site usage represents the predominant splicing defect observed upon SACY-1 depletion, consistent with a role for SACY-1 in the second step of splicing. Missplicing events appear more prevalent in the soma than the germline, suggesting that surveillance mechanisms protect the germline from aberrant splicing. The transcriptome changes observed after SACY-1 depletion suggest that disruption of the spliceosome induces a stress response, which could contribute to the cellular phenotypes conferred by sacy-1 mutant alleles. Multiple sacy-1/ddx41 missense mutations, including the R525H human oncogenic variant, confer antimorphic activity, suggesting that their incorporation into the spliceosome is detrimental. Antagonistic variants that perturb the function of the spliceosome may be relevant to the disease-causing mutations, including DDX41, affecting highly conserved components of the spliceosome in humans.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11105-11105
Author(s):  
John P. Shen ◽  
Rohith Srivas ◽  
Ana Bojorquez-Gomez ◽  
Katherine Licon ◽  
Jian Feng Li ◽  
...  

11105 Background: Mutation, deletion, or epigenetic silencing of tumor suppressor genes is a near universal feature of malignant cells. However, therapeutic strategies for restoring the function of mutated or deleted genes have proven difficult. Synthetic lethality, an event in which the simultaneous perturbation of two genes results in cellular death, has been proposed as a method to selectively target cancer cells. Identifying and pharmacologically inhibiting proteins encoded by genes that are synthetic lethal with known tumor suppressor mutations should result in selective toxicity to tumor cells. Methods: To identify candidate target proteins we measured all pair-wise genetic interactions between all known orthologs of human tumor suppressor genes (162 genes) and all orthologs of druggable human proteins (~400 genes) in the model organism S. Cerevisiae. Analysis of the data uncovered 2,087 distinct synthetic lethal interactions between a tumor suppressor and druggable gene. A computational algorithm was then developed to identify those interactions which were likely to be conserved in humans based on conservation of the synthetic lethal relationship in the distant fission yeast S. pombe. Results: Our bioinformatic analysis suggested a high probability of conservation of the synthetic lethal interactions between the yeast RAD51 (ortholog of BRCA1) and RAD57 (ortholog of XRCC3) with HDA1 (a histone deacetylase; HDAC). We confirmed this by treating LN428 cells with stable lentiviral knockdown of BRCA1 or XRCC3 with the HDAC inhibitors vorinostat (SAHA) and entinostat (MS-275). Both the BRCA1 and XRCC3 knockdown cell lines were significantly more sensitive to HDAC inhibition relative to wild-type (non-silencing lentiviral control) cell line (Table). Conclusions: These results demonstrate that high-throughput approaches for screening synthetic lethal interactions in model organisms such as S. cerevisiae and S. pombecan serve as a valuable resource in helping to identify novel therapeutic targets in human cancer. [Table: see text]


2012 ◽  
Vol 48 ◽  
pp. 52
Author(s):  
I. Caffa ◽  
D. Soncini ◽  
F. Ansaldi ◽  
A. Provenzani ◽  
I. Castiglioni ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (45) ◽  
pp. 73664-73680 ◽  
Author(s):  
Jan-Gowth Chang ◽  
Chia-Cheng Chen ◽  
Yi-Ying Wu ◽  
Ting-Fang Che ◽  
Yi-Syuan Huang ◽  
...  

2017 ◽  
Vol 17 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Xinwei Geng ◽  
Xiaohui Wang ◽  
Dan Zhu ◽  
Songmin Ying

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicola A. Thompson ◽  
Marco Ranzani ◽  
Louise van der Weyden ◽  
Vivek Iyer ◽  
Victoria Offord ◽  
...  

AbstractGenetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to identify 105 gene combinations whose co-disruption results in a loss of cellular fitness. 27 pairs influence fitness across multiple cell lines including the paralogues FAM50A/FAM50B, two genes of unknown function. Silencing of FAM50B occurs across a range of tumour types and in this context disruption of FAM50A reduces cellular fitness whilst promoting micronucleus formation and extensive perturbation of transcriptional programmes. Our studies reveal the fitness effects of FAM50A/FAM50B in cancer cells.


2010 ◽  
Vol 192 (13) ◽  
pp. 3452-3463 ◽  
Author(s):  
Nicole M. Dupes ◽  
Brian W. Walsh ◽  
Andrew D. Klocko ◽  
Justin S. Lenhart ◽  
Heather L. Peterson ◽  
...  

ABSTRACT The β clamp is an essential replication sliding clamp required for processive DNA synthesis. The β clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of β clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49°C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49°C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the β clamp, a common site occupied by proteins that bind the β clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis β clamp separate the role of the β clamp in DNA replication from its role in MMR.


Sign in / Sign up

Export Citation Format

Share Document