scholarly journals Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response

2021 ◽  
Vol 118 (24) ◽  
pp. e2103240118
Author(s):  
Yuping Zhang ◽  
Sathiya P. Narayanan ◽  
Rahul Mannan ◽  
Gregory Raskind ◽  
Xiaoming Wang ◽  
...  

Diverse subtypes of renal cell carcinomas (RCCs) display a wide spectrum of histomorphologies, proteogenomic alterations, immune cell infiltration patterns, and clinical behavior. Delineating the cells of origin for different RCC subtypes will provide mechanistic insights into their diverse pathobiology. Here, we employed single-cell RNA sequencing (scRNA-seq) to develop benign and malignant renal cell atlases. Using a random forest model trained on this cell atlas, we predicted the putative cell of origin for more than 10 RCC subtypes. scRNA-seq also revealed several attributes of the tumor microenvironment in the most common subtype of kidney cancer, clear cell RCC (ccRCC). We elucidated an active role for tumor epithelia in promoting immune cell infiltration, potentially explaining why ccRCC responds to immune checkpoint inhibitors, despite having a low neoantigen burden. In addition, we characterized an association between high endothelial cell types and lack of response to immunotherapy in ccRCC. Taken together, these single-cell analyses of benign kidney and RCC provide insight into the putative cell of origin for RCC subtypes and highlight the important role of the tumor microenvironment in influencing ccRCC biology and response to therapy.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2551
Author(s):  
Magdalena Rausch ◽  
Léa Blanc ◽  
Olga De Souza Silva ◽  
Olivier Dormond ◽  
Arjan W. Griffioen ◽  
...  

Two-dimensional cell culture-based platforms are easy and reproducible, however, they do not resemble the heterotypic cell-cell interactions or the complex tumor microenvironment. These parameters influence the treatment response and the cancer cell fate. Platforms to study the efficacy of anti-cancer treatments and their impact on the tumor microenvironment are currently being developed. In this study, we established robust, reproducible, and easy-to-use short-term spheroid cultures to mimic clear cell renal cell carcinoma (ccRCC). These 3D co-cultures included human endothelial cells, fibroblasts, immune cell subsets, and ccRCC cell lines, both parental and sunitinib-resistant. During spheroid formation, cells induce the production and secretion of the extracellular matrix. We monitored immune cell infiltration, surface protein expression, and the response to a treatment showing that the immune cells infiltrated the spheroid co-cultures within 6 h. Treatment with an optimized drug combination or the small molecule-based targeted drug sunitinib increased immune cell infiltration significantly. Assessing the therapeutic potential of this drug combination in this platform, we revealed that the expression of PD-L1 increased in 3D co-cultures. The cost- and time-effective establishment of our 3D co-culture model and its application as a pre-clinical drug screening platform can facilitate the treatment validation and clinical translation.


2021 ◽  
Author(s):  
Duanrui Liu ◽  
Jingyu Zhu ◽  
Zongming Wang ◽  
Yusong Fang ◽  
Mingjie Yuan ◽  
...  

Abstract Background: RNA N6-methyladenosine (m6A) modification plays a nonnegligible role in shaping individual tumor microenvironment (TME) characterizations. However, the landscape and relationship of m6A modification and TME cell infiltration remain unknown in gastroesophageal adenocarcinomas (GEA). Methods: We systematically examined the TME of GEA focusing on the distinct m6A modification patterns from the public databases. Intrinsic patterns of m6A modification were evaluated for associations with clinicopathological characteristics, underlying biological pathways, tumor immune cell infiltration, oncological outcomes and treatment responses. We generated a single-cell transcriptome atlas of the GEA sample inhouse to validate the role of the m6A modification pattern on TME.Results: We identified and validated the landscape of m6A regulators and tumor-infiltrating immune cells in GEA. Then, two distinct m6A modification patterns of GEA (cluster1/2 subgroup) were defined, and we correlated two subgroups with TME cell-infiltrating characteristics. Cluster2 subgroup correlates with a poorer prognosis, down-regulated PD-1 expression, higher risk scores and distinct immune cell infiltration. Additionally, PPI and WGCNA network analysis were integrated to identify key module genes closely related to immune infiltration of GEA to find immunotherapy markers. And COL4A1 and COL5A2 in brown module were significantly correlated to the prognosis, PD-1/L1 and CTLA-4 expression of GEA patients. Interesting, low COL5A2 expression was linked to an enhanced response to anti-PD-1 immunotherapy. Finally, a prognostic risk score was constructed using three m6A regulator-associated signatures that represented an independent prognosis factor for GEA. The single-cell transcriptome atlas of GEA sample validated the role of m6A modification pattern on TME and revealed that three m6A regulators are highly expressed in CD4+ T cells, CD8+ T cells, Tregs and Macrophages.Conclusions: Our work revealed m6A RNA methylation regulators are a type of vital participant in the malignant progression and TME diversity of GEA. m6A modification patterns of COL5A2 may be the potential biomarker contributes to predicting the response to anti-PD-1 immunotherapy.


2018 ◽  
Vol 115 (50) ◽  
pp. E11701-E11710 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Haiyin Chen-Harris ◽  
Oleg Mayba ◽  
Steve Lianoglou ◽  
Arthur Wuster ◽  
...  

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti–PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2020 ◽  
Vol 235 (10) ◽  
pp. 7321-7331 ◽  
Author(s):  
Xiangyang Deng ◽  
Dongdong Lin ◽  
Xiaojia Zhang ◽  
Xuchao Shen ◽  
Zelin Yang ◽  
...  

2020 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Garry L. Coles ◽  
Savreet K. Sandhu ◽  
David S. Johnson ◽  
Adam S. Adler ◽  
...  

AbstractBackgroundThe anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated.ResultsFor the first time, we used single-cell RNA sequencing to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in CD45+ cells, and down-regulation of extracellular matrix genes in CD45-cells. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1.ConclusionsTaken together, our data could be leveraged translationally to improve anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.


Author(s):  
Taisheng Liu ◽  
Liyi Guo ◽  
Guihong Liu ◽  
Xiaoshan Hu ◽  
Xiaoning Li ◽  
...  

Background: DNA methylation is an important epigenetic modification, among which 5-methylcytosine methylation (5mC) is generally associated with tumorigenesis. Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment (TME) remain unclear.Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were analyzed systematically. The correlation between the 5mC modification and tumor microenvironment cell infiltration was further assessed. The 5mCscore was developed to evaluate tumor mutation burden, immune check-point inhibitor response, and the clinical prognosis of individual tumors.Results: Three 5mC modification patterns were established based on the clinical characteristics of 21 5mC regulators. According to the differential expression of 5mC regulators, three distinct 5mC gene cluster were also identified, which showed distinct TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was constructed to evaluate the tumor mutation burden, immune check-point inhibitor response, and prognosis characteristics. We found that patients with a low 5mCscore had significant immune cell infiltration and increased clinical benefit.Conclusion: This study indicated that the 5mC modification is involved in regulating TME infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to treat lung cancer.


Sign in / Sign up

Export Citation Format

Share Document