scholarly journals On the sparsity of fitness functions and implications for learning

2021 ◽  
Vol 119 (1) ◽  
pp. e2109649118
Author(s):  
David H. Brookes ◽  
Amirali Aghazadeh ◽  
Jennifer Listgarten

Fitness functions map biological sequences to a scalar property of interest. Accurate estimation of these functions yields biological insight and sets the foundation for model-based sequence design. However, the fitness datasets available to learn these functions are typically small relative to the large combinatorial space of sequences; characterizing how much data are needed for accurate estimation remains an open problem. There is a growing body of evidence demonstrating that empirical fitness functions display substantial sparsity when represented in terms of epistatic interactions. Moreover, the theory of Compressed Sensing provides scaling laws for the number of samples required to exactly recover a sparse function. Motivated by these results, we develop a framework to study the sparsity of fitness functions sampled from a generalization of the NK model, a widely used random field model of fitness functions. In particular, we present results that allow us to test the effect of the Generalized NK (GNK) model’s interpretable parameters—sequence length, alphabet size, and assumed interactions between sequence positions—on the sparsity of fitness functions sampled from the model and, consequently, the number of measurements required to exactly recover these functions. We validate our framework by demonstrating that GNK models with parameters set according to structural considerations can be used to accurately approximate the number of samples required to recover two empirical protein fitness functions and an RNA fitness function. In addition, we show that these GNK models identify important higher-order epistatic interactions in the empirical fitness functions using only structural information.

2021 ◽  
Author(s):  
David H Brookes ◽  
Amirali Aghazadeh ◽  
Jennifer Listgarten

Fitness functions map biological sequences to a scalar property of interest. Accurate estimation of these functions yields biological insight and sets the foundation for model-based sequence design. However, the amount of fitness data available to learn these functions is typically small relative to the large combinatorial space of sequences; characterizing how much data is needed for accurate estimation remains an open problem. There is a growing body of evidence demonstrating that empirical fitness functions display substantial sparsity when represented in terms of epistatic interactions. Moreover, the theory of Compressed Sensing provides scaling laws for the number of samples required to exactly recover a sparse function. Motivated by these results, we study the sparsity of fitness functions sampled from a generalization of the NK model, a widely-used random field model of fitness functions. In particular, we present theoretical results that allow us to test the effect of the Generalized NK (GNK) model's interpretable parameters---sequence length, alphabet size, and assumed interactions between sequence positions---on the sparsity of fitness functions sampled from the model and, consequently, the number of measurements required to exactly recover these functions. Further, we show that GNK fitness functions with parameters set according to protein structural contacts can be used to accurately approximate the number of samples required to estimate two empirical protein fitness functions, and are able to identify important higher-order epistatic interactions in these functions using only structural information.


Leonardo ◽  
2016 ◽  
Vol 49 (3) ◽  
pp. 251-256 ◽  
Author(s):  
Penousal Machado ◽  
Tiago Martins ◽  
Hugo Amaro ◽  
Pedro H. Abreu

Photogrowth is a creativity support tool for the creation of nonphotorealistic renderings of images. The authors discuss its evolution from a generative art application to an interactive evolutionary art tool and finally into a meta-level interactive art system in which users express their artistic intentions through the design of a fitness function. The authors explore the impact of these changes on the sense of authorship, highlighting the range of imagery that can be produced by the system.


Author(s):  
Yuanwei Ma ◽  
Dezhong Wang ◽  
Zhilong Ji ◽  
Nan Qian

In atmospheric dispersion models of nuclear accident, the empirical dispersion coefficients were obtained under certain experiment conditions, which is different from actual conditions. This deviation brought in the great model errors. A better estimation of the radioactive nuclide’s distribution could be done by correcting coefficients with real-time observed value. This reverse problem is nonlinear and sensitive to initial value. Genetic Algorithm (GA) is an appropriate method for this correction procedure. Fitness function is a particular type of objective function to achieving the set goals. To analysis the fitness functions’ influence on the correction procedure and the dispersion model’s forecast ability, four fitness functions were designed and tested by a numerical simulation. In the numerical simulation, GA, coupled with Lagrange dispersion model, try to estimate the coefficients with model errors taken into consideration. Result shows that the fitness functions, in which station is weighted by observed value and by distance far from release point, perform better when it exists significant model error. After performing the correcting procedure on the Kincaid experiment data, a significant boost was seen in the dispersion model’s forecast ability.


2015 ◽  
Vol 764-765 ◽  
pp. 444-447
Author(s):  
Keun Hong Chae ◽  
Hua Ping Liu ◽  
Seok Ho Yoon

In this paper, we propose a multiple objective fitness function for cognitive engines by using the genetic algorithm (GA). Specifically, we propose four single objective fitness functions, and finally, we propose a multiple objective fitness function based on the single objective fitness functions for transmission parameter optimization. Numerical results demonstrate that we can obtain transmission parameter sets optimized for given transmission scenarios with the GA-based cognitive engine incorporating the proposed objective fitness function.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1311
Author(s):  
Yuchen Wang ◽  
Rong Xie

We proposed a pixel-based evolution method to automatically generate evolutionary art. Our method can generate diverse artworks, including original artworks and imitating artworks, with different artistic styles and high visual complexity. The generation process is fully automated. In order to adapt to the pixel-based method, a von Neumann neighbor topology-modified particle swarm optimization (PSO) is employed to the proposed method. The fitness functions of PSO are well prepared. Firstly, we come up with a set of aesthetic fitness functions. Next, the imitating fitness function is designed. Finally, the aesthetic fitness functions and the imitating fitness function are weighted into one single object function, which is used in the modified PSO. Both the original outputs and imitating outputs are shown. A questionnaire is designed to investigate the subjective aesthetic feeling of proposed evolutionary art, and the statistics are shown.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amirali Aghazadeh ◽  
Hunter Nisonoff ◽  
Orhan Ocal ◽  
David H. Brookes ◽  
Yijie Huang ◽  
...  

AbstractDespite recent advances in high-throughput combinatorial mutagenesis assays, the number of labeled sequences available to predict molecular functions has remained small for the vastness of the sequence space combined with the ruggedness of many fitness functions. While deep neural networks (DNNs) can capture high-order epistatic interactions among the mutational sites, they tend to overfit to the small number of labeled sequences available for training. Here, we developed Epistatic Net (EN), a method for spectral regularization of DNNs that exploits evidence that epistatic interactions in many fitness functions are sparse. We built a scalable extension of EN, usable for larger sequences, which enables spectral regularization using fast sparse recovery algorithms informed by coding theory. Results on several biological landscapes show that EN consistently improves the prediction accuracy of DNNs and enables them to outperform competing models which assume other priors. EN estimates the higher-order epistatic interactions of DNNs trained on massive sequence spaces-a computational problem that otherwise takes years to solve.


2020 ◽  
Vol 17 (7) ◽  
pp. 2932-2939
Author(s):  
Rania A. Alharbey ◽  
Kiran Sultan

Chaotic systems have gained enormous research attention since the pioneering work of Lorenz. Rössler system stands among the extensively studied classical chaotic models. This paper proposes a technique based on Bernstein Polynomial Basis Function to convert the three-dimensional Rössler system of Ordinary Differential Equations (ODEs) into an error minimization problem. First, the properties of Bernstein Polynomials are applied to derive the fitness function of Rössler chaotic system. Second, in order to obtain the values of unknown Bernstein coefficients to optimize the fitness function, the problem is solved using two versatile algorithms from the family of Evolutionary Algorithms (EAs), Genetic Algorithm (GA) hybridized with Interior Point Algorithm (IPA) and Differential Algorithm (DE). For validity of the proposed technique, simulation results are provided which verify the global stability of error dynamics and provide accurate estimation of the desired parameters.


1983 ◽  
Vol 219 (1216) ◽  
pp. 327-353 ◽  

Fisher (1930), Haldane (1932), and others discussed short and long term fitness relationships of the biological basis of social behaviour. Hamilton (1964 a , b ) proposed the inequality b / c > 1/ r ( b and c are marginal benefit and cost parameters, respectively, r is an appropriate kinship coefficient) as an essential concomitant of the evolution of altruism. Virtually all current kin selection models take the marginal benefit and cost parameters as primitive concepts and combine them in various ways to determine population fitness values. We offer an intrinsic ‘fitness function’ approach to modelling the theory of kin selection. The components of the model involve: ( a ) the delineation of the basic group structure specifying individual relationships; ( b ) the specification of local fitness functions that depend on group composition; ( c ) the determination of average fitness functions for the different phenotypes with respect to the population at large. We then derive a pair of benefit and cost functions, which are functions of the group composition and the numbers of altruist and selfish phenotypes. In this new framework the quantitative validity of the Hamilton criterion for the evolution of altruism are assessed and reinterpreted.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Tiago Martins ◽  
João Correia ◽  
Ernesto Costa ◽  
Penousal Machado

Typefaces have become an essential resource used by graphic designs to communicate. Some designers opt to create their own typefaces or custom lettering that better suits each design project. This increases the demand for novelty in type design, and consequently the need for good technological means to explore new thinking and approaches in the design of typefaces. In this work, we continue our research on the automatic evolution of glyphs (letterforms or designs of characters). We present an evolutionary framework for the automatic generation of type stencils based on fitness functions designed by the user. The proposed framework comprises two modules: the evolutionary system, and the fitness function design interface. The first module, the evolutionary system, operates a Genetic Algorithm, with a novelty search mechanism, and the fitness assignment scheme. The second module, the fitness function design interface, enables the users to create fitness functions through a responsive graphical interface, by indicating the desired values and weights of a set of behavioural features, based on machine learning approaches, and morphological features. The experimental results reveal the wide variety of type stencils and glyphs that can be evolved with the presented framework and show how the design of fitness functions influences the outcomes, which are able to convey the preferences expressed by the user. The creative possibilities created with the outcomes of the presented framework are explored by using one evolved stencil in a design project. This research demonstrates how Evolutionary Computation and Machine Learning may address challenges in type design and expand the tools for the creation of typefaces.


Author(s):  
Atiieh Hoseinpour ◽  
Mojtaba Jafari Lahijani ◽  
Mohammad Hosseinpour ◽  
Javad Kazemitabar

Background & Objective: A sensor network is composed of a large number of sensor nodes that are deployed to perform measurement and/or command and control in a field. Sensor nodes are battery powered devices and replacement or recharging of their batteries may not be feasible. One of the major challenges with sensory wireless networks is excessive energy consumption in nodes. Clustering is one of the methods that has been offered for resolving this issue. In this paper, we pursue evolutionary clustering and propose a new fitness function that har-nesses multiple propagation indices. Methods: In this paper we develop an efficient fitness function by first selecting the best clusters, and then selecting the best attribution of cluster to clusters. The distance between the nodes and relevant cluster heads was used for the mathematical modelling necessary. In the end we develop the fitness function equation by using normalization of the raw data. Results: Simulation results show improvement compared to previous fitness functions in clustering of the wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document