scholarly journals A functional division of Drosophila sweet taste neurons that is value-based and task-specific

2022 ◽  
Vol 119 (3) ◽  
pp. e2110158119
Author(s):  
Hsueh-Ling Chen ◽  
Dorsa Motevalli ◽  
Ulrich Stern ◽  
Chung-Hui Yang

Sucrose is an attractive feeding substance and a positive reinforcer for Drosophila. But Drosophila females have been shown to robustly reject a sucrose-containing option for egg-laying when given a choice between a plain and a sucrose-containing option in specific contexts. How the sweet taste system of Drosophila promotes context-dependent devaluation of an egg-laying option that contains sucrose, an otherwise highly appetitive tastant, is unknown. Here, we report that devaluation of sweetness/sucrose for egg-laying is executed by a sensory pathway recruited specifically by the sweet neurons on the legs of Drosophila. First, silencing just the leg sweet neurons caused acceptance of the sucrose option in a sucrose versus plain decision, whereas expressing the channelrhodopsin CsChrimson in them caused rejection of a plain option that was “baited” with light over another that was not. Analogous bidirectional manipulations of other sweet neurons did not produce these effects. Second, circuit tracing revealed that the leg sweet neurons receive different presynaptic neuromodulations compared to some other sweet neurons and were the only ones with postsynaptic partners that projected prominently to the superior lateral protocerebrum (SLP) in the brain. Third, silencing one specific SLP-projecting postsynaptic partner of the leg sweet neurons reduced sucrose rejection, whereas expressing CsChrimson in it promoted rejection of a light-baited option during egg-laying. These results uncover that the Drosophila sweet taste system exhibits a functional division that is value-based and task-specific, challenging the conventional view that the system adheres to a simple labeled-line coding scheme.

2011 ◽  
Vol 366 (1564) ◽  
pp. 596-610 ◽  
Author(s):  
Benjamin W. Tatler ◽  
Michael F. Land

One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 152-152
Author(s):  
Ying-Ling Jao ◽  
Carissa Coleman ◽  
Kristine Williams ◽  
Diane Berish ◽  
Wen Liu ◽  
...  

Abstract Communication is fundamental for daily care activities in nursing homes (NHs). Second-by-second behavioral coding of video observations is an ideal approach to examine the interactive nature of communication but requires a reliable coding scheme. Recent studies have adapted the Peron-Centered Behavioral Inventory (PCBI) and Task-Centered Behavioral Inventory (TCBI) to analyze caregiver communication during mealtime interactions, but their use for coding general daily caregiving activities has not been widely evaluated. This pilot study adapted the PCBI and TCBI of video observations and determined their inter-rater reliability for measuring caregiver verbal communication with persons with dementia (PwD). We analyzed videos from a randomized controlled trial of an intervention to improve caregiver communication in NHs. We selected one 1-minute segment from 12 videos that included interactions of caregiver-resident dyads. One research assistant transcribed caregivers’ verbal communication and segmented the communication into utterances. Two other research assistants independently coded each utterance using the adapted PCBI and TCBI. The coding scheme was expanded by modifying the existing operational definitions, adding three new codes, and developing a coding decision guide. Residents were Caucasian (100%), mean age 86 years with dementia and resistive behaviors. The adapted PCBI and TCBI had an inter-rater reliability of Kappa=0.656 (p<.001) across the 12 videos. Overall, our adapted PCBI and TCBI showed substantial inter-rater reliability. The results support the use of our adapted PCBI and TCBI to distinguish between person-centered and task-centered communication in video observations, which, in turn, allows for sequential analysis to examine the impact of caregiver communication on PwD.


2014 ◽  
Vol 116 (8) ◽  
pp. 1006-1016 ◽  
Author(s):  
Hsiu-Wen Tsai ◽  
Paul W. Davenport

Respiratory load compensation is a sensory-motor reflex generated in the brain stem respiratory neural network. The nucleus of the solitary tract (NTS) is thought to be the primary structure to process the respiratory load-related afferent activity and contribute to the modification of the breathing pattern by sending efferent projections to other structures in the brain stem respiratory neural network. The sensory pathway and motor responses of respiratory load compensation have been studied extensively; however, the mechanism of neurogenesis of load compensation is still unknown. A variety of studies has shown that inhibitory interconnections among the brain stem respiratory groups play critical roles for the genesis of respiratory rhythm and pattern. The purpose of this study was to examine whether inhibitory glycinergic neurons in the NTS were activated by external and transient tracheal occlusions (ETTO) in anesthetized animals. The results showed that ETTO produced load compensation responses with increased inspiratory, expiratory, and total breath time, as well as elevated activation of inhibitory glycinergic neurons in the caudal NTS (cNTS) and intermediate NTS (iNTS). Vagotomized animals receiving transient respiratory loads did not exhibit these load compensation responses. In addition, vagotomy significantly reduced the activation of inhibitory glycinergic neurons in the cNTS and iNTS. The results suggest that these activated inhibitory glycinergic neurons in the NTS might be essential for the neurogenesis of load compensation responses in anesthetized animals.


2020 ◽  
Vol 32 (2) ◽  
pp. 353-366 ◽  
Author(s):  
Alexis D. J. Makin ◽  
Giulia Rampone ◽  
Amie Morris ◽  
Marco Bertamini

The brain can organize elements into perceptually meaningful gestalts. Visual symmetry is a useful tool to study gestalt formation, and we know that there are symmetry-sensitive regions in the extrastriate cortex. However, it is unclear whether symmetrical gestalt formation happens automatically, whatever the participant's current task is. Does the visual brain always organize and interpret the retinal image when possible, or only when necessary? To test this, we recorded an ERP called the sustained posterior negativity (SPN). SPN amplitude increases with the proportion of symmetry in symmetry + noise displays. We compared the SPN across five tasks with different cognitive and perceptual demands. Contrary to our predictions, the SPN was the same across four of the five tasks but selectively enhanced during active regularity discrimination. Furthermore, during regularity discrimination, the SPN was present on hit trials and false alarm trials but absent on miss and correct rejection trials. We conclude that gestalt formation is automatic and task-independent, although it occasionally fails on miss trials. However, it can be enhanced by attention to visual regularity.


2009 ◽  
Vol 21 (5) ◽  
pp. 1259-1276 ◽  
Author(s):  
Timothée Masquelier ◽  
Rudy Guyonneau ◽  
Simon J. Thorpe

Recently it has been shown that a repeating arbitrary spatiotemporal spike pattern hidden in equally dense distracter spike trains can be robustly detected and learned by a single neuron equipped with spike-timing-dependent plasticity (STDP) (Masquelier, Guyonneau, & Thorpe, 2008). To be precise, the neuron becomes selective to successive coincidences of the pattern. Here we extend this scheme to a more realistic scenario with multiple repeating patterns and multiple STDP neurons “listening” to the incoming spike trains. These “listening” neurons are in competition: as soon as one fires, it strongly inhibits the others through lateral connections (one-winner-take-all mechanism). This tends to prevent the neurons from learning the same (parts of the) repeating patterns, as shown in simulations. Instead, the population self-organizes, trying to cover the different patterns or coding one pattern by the successive firings of several neurons, and a powerful distributed coding scheme emerges. Taken together, these results illustrate how the brain could easily encode and decode information in the spike times, a theory referred to as temporal coding, and how STDP could play a key role by detecting repeating patterns and generating selective response to them.


Perception ◽  
2017 ◽  
Vol 46 (3-4) ◽  
pp. 283-306 ◽  
Author(s):  
Aaron Jacobson ◽  
Erin Green ◽  
Lori Haase ◽  
Jacquelyn Szajer ◽  
Claire Murphy

Age affects the human taste system at peripheral and central levels. Metabolic syndrome is a constellation of risk factors (e.g., abdominal obesity and hypertension) that co-occur, increase with age, and heighten risk for cardiovascular disease, diabetes, and cognitive decline. Little is known about how age, metabolic syndrome, and hunger state interact to influence how the brain processes information about taste. We investigated brain activation during the hedonic evaluation of a pleasant, nutritive stimulus (sucrose) within regions critical for taste, homeostatic energy regulation, and reward, as a function of the interactions among age, metabolic syndrome, and hunger condition. We scanned young and elderly adults, half with risk factors associated with metabolic syndrome twice: Once fasted overnight and once after a preload. Functional magnetic resonance imaging data indicated significant effects of age as well as interactive effects with metabolic syndrome and hunger condition. Age-related differences in activation were dependent on the hunger state in regions critical for homoeostatic energy regulation and basic as well as higher order sensory processing and integration. The effects of age and metabolic syndrome on activation in the insula, orbital frontal cortex, caudate, and the hypothalamus may have particularly important implications for taste processing, energy regulation, and dietary choices.


2010 ◽  
Vol 53 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Jiří Patočka ◽  
Zdeněk Hon

Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Elena von Molitor ◽  
Katja Riedel ◽  
Michael Krohn ◽  
Mathias Hafner ◽  
Rüdiger Rudolf ◽  
...  

Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.


2020 ◽  
Author(s):  
Colin Bredenberg ◽  
Eero P. Simoncelli ◽  
Cristina Savin

AbstractNeural populations do not perfectly encode the sensory world: their capacity is limited by the number of neurons, metabolic and other biophysical resources, and intrinsic noise. The brain is presumably shaped by these limitations, improving efficiency by discarding some aspects of incoming sensory streams, while prefer-entially preserving commonly occurring, behaviorally-relevant information. Here we construct a stochastic recurrent neural circuit model that can learn efficient, task-specific sensory codes using a novel form of reward-modulated Hebbian synaptic plasticity. We illustrate the flexibility of the model by training an initially unstructured neural network to solve two different tasks: stimulus estimation, and stimulus discrimination. The network achieves high performance in both tasks by appropriately allocating resources and using its recurrent circuitry to best compensate for different levels of noise. We also show how the interaction between stimulus priors and task structure dictates the emergent network representations.


Author(s):  
Carol Whitney ◽  
Daisy Bertrand ◽  
Jonathan Grainger

Open-bigram and spatial-coding schemes provide different accounts of how letter position is encoded by the brain during visual word recognition. Open-bigram coding involves an explicit representation of order based on letter pairs, while spatial coding involves a comparison function operating over representations of individual letters. We identify a set of priming conditions (subset primes and reversed interior primes) for which the two types of coding schemes give opposing predictions, hence providing the opportunity for strong scientific inference. Experimental results are consistent with the open-bigram account, and inconsistent with the spatial-coding scheme.


Sign in / Sign up

Export Citation Format

Share Document