scholarly journals Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature

1989 ◽  
Vol 86 (17) ◽  
pp. 6528-6532 ◽  
Author(s):  
A Escher ◽  
D J O'Kane ◽  
J Lee ◽  
A A Szalay

A 2.2-kilobase-pair (kbp) DNA fragment from Vibrio harveyi contains the luxA and luxB genes separated by a 26-base-pair (bp) intergenic region. The two genes were converted to a single open reading frame by site-specific mutagenesis. A full-length fusion protein is obtained when the new gene is placed under transcriptional control of a T7 promoter in Escherichia coli. Bioluminescence of colonies containing the gene fusion is 0.002% of the wild-type luciferase [alkanal monooxygenase (FMN-linked); alkanal, reduced-FMN:oxygen oxidoreductase (1-hydroxylating, luminescing), EC 1.14.14.3] at 37 degrees C. Growth at 23 degrees C results in a greater than 50,000-fold increase in light emission in cells containing fusion protein, whereas only a 3-fold increase in observed with cells containing the luxAB dicistron. Purified fusion protein isolated from E. coli grown at 19 degrees C exists in both monomeric and dimeric forms with specific bioluminescence activities comparable to the heterodimeric wild-type enzyme at 23 degrees C and 37 degrees C. These findings show that the alpha beta fusion polypeptide is functional as a monomer and suggest that its folding is drastically affected at elevated temperature. We hypothesize that the two-subunit bacterial luciferase may have evolved from a monomer as a result of a temperature increase in the environment.

2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


1994 ◽  
Vol 72 (1) ◽  
pp. 188-192 ◽  
Author(s):  
Kazuki Saito ◽  
Reiko Kanda ◽  
Makoto Kurosawa ◽  
Isamu Murakoshi

Cysteine synthase (EC 4.2.99.8) in higher plants is responsible for biosynthesis of not only cysteine but also some nonprotein amino acids such as β-(pyrazol-1-yl)-L-alanine. The cDNA of a cysteine synthase from spinach (Spinacia oleracea) was inserted into pET8c (=pET3d) under the transcriptional control of strong T7 promoter to yield an overexpression vector pCEK1. The amount of the exogenous cysteine synthase was increased up to 40% of the total soluble protein of Escherichia coli transformed with pCEK1. β-(Pyrazol-1-yl)-L-alanine, a specific metabolite in plants of the Cucurbitaceae, was biosynthesized by overexpressed cysteine synthase from pyrazole in the presence of O-acetyl-L-serine and serine, in vitro and in vivo, respectively. The present study provides the system for mechanistic investigation of biosynthesis of cysteine and biogenetically related β-substituted alanines at molecular genetic level.


2000 ◽  
Vol 278 (1) ◽  
pp. L75-L80 ◽  
Author(s):  
Machiko Ikegami ◽  
Jeffrey A. Whitsett ◽  
Zissis C. Chroneos ◽  
Gary F. Ross ◽  
Jacquelyn A. Reed ◽  
...  

Mice that express interleukin (IL)-4 in Clara cells (CCSP-IL-4) develop chronic airway inflammation and an alveolar proteinosis-like syndrome. To identify the role of IL-4 in surfactant homeostasis, we measured lipid and protein metabolism in the lungs of CCSP-IL-4 mice in vivo. Alveolar saturated phosphatidylcholine (Sat PC) pools were increased 6.5-fold and lung tissue Sat PC pools were increased 4.8-fold in the IL-4 transgenic mice. Whereas surfactant protein (SP) A was increased proportionately to Sat PC, SP-D was increased approximately 90-fold in the IL-4 mice compared with wild-type mice and was associated with 2.8-fold increase in SP-D mRNA. The incorporation of palmitate and choline into Sat PC was increased about twofold in CCSP-IL-4 mice. Although trace doses of radiolabeled Sat PC were cleared from the air spaces and lungs of CCSP-IL-4 mice more slowly than in wild-type mice, net clearance of Sat PC from the lungs of CCSP-IL-4 mice was sixfold higher in the IL-4 mice than in wild-type mice because of the larger Sat PC pool sizes. Expression of IL-4 in Clara cells increased surfactant lipid synthesis and clearance, establishing a new equilibrium with increased surfactant pools and an alveolar proteinosis associated with a selective increase in SP-D protein, demonstrating a previously unexpected effect of IL-4 in pulmonary surfactant homeostasis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 364-364
Author(s):  
Olga A Guryanova ◽  
Yen Lieu ◽  
Kaitlyn R Shank ◽  
Sharon Rivera ◽  
Francine E Garrett-Bakelman ◽  
...  

Abstract Mutations in the DNA methyltransferase 3A (DNMT3A) gene are frequent in normal karyotype de novo acute myeloid leukemia (AML) (20-35%), chronic myelomonocytic leukemia (CMML) (10-20%) and myelodysplastic syndrome (MDS) (8%). Hematopoietic-specific loss of Dnmt3a in a mouse model leads to acquisition of aberrant self-renewal by the HSCs and expansion of the stem/progenitor compartment in bone marrow transplantation studies. Despite these important insights, the impact of hematopoietic deletion of Dnmt3a on disease phenotype in primary, non-transplanted mice has not been described. Mx1-Cre-mediated Dnmt3a ablation in the hematopoietic system in primary mice led to the development of a myeloproliferative neoplasm (MPN) with a 100% penetrance (n=14) and a median age of onset at 47.7 weeks (survival difference between Dnmt3a KO and control animals p<0.0001, Figure 1A). Loss of Dnmt3a in the hematopoietic compartment resulted in thrombocytopenia (platelet counts 250±251.8 K/μl in Dnmt3a KO vs 1260±292.8 K/μl in controls, p<0.002) and overall anemia (hematocrit 25.25±7.48% vs 44.8±5.83%, p<0.006). Marked expansion of the mature Mac1+Gr1+ myeloid cell population in the peripheral blood was evident by flow cytometric analysis (52.3±18.03% in Dnmt3a knock-outs). Myeloproliferation induced by Dnmt3a loss was characterized by marked, progressive hepatomegaly (liver weights 7.25±1.195 g in Dnmt3a-deleted animals vs 1.61±0.266 g in wild-type controls, p<1.75×10^-8, Figure 1B) with moderate splenomegaly (spleen weights 457.5±379.6 mg vs 79.43±21.19 mg, p<0.033). Histopathological analysis revealed massive myeloid infiltration in spleens and livers leading to complete effacement of organ architecture, left shifted myeloid cells, and occasional blasts. In addition, the presence of megakaryocytes in spleens and livers of Dnmt3a-deleted mice was indicative of extramedullary hematopoiesis. The significant myeloid infiltration of liver parenchyma was confirmed by flow cytometric analysis of liver tissue, with Mac1+Gr1+ myeloid cells making up 66.15±11.93% of all viable cells. In line with previous reports, we observed an increased number of immunophenotypically defined stem (Lin-Sca1+cKit+, LSK, 2.013±1.200% in Dnmt3a-ablated mice vs 0.423±0.052% in controls, a 4.76-fold increase, p<0.014) and granulomonocytic progenitor (GMP, Lin-Sca1-cKit+CD34+FcγR+, 2.713±1.593% vs 1.278±0.451%, a 2.12-fold increase, p<0.024) cells in the bone marrow. Consistent with extramedullary hematopoiesis, we were able to detect expanded LSK cell populations in livers and spleens of Dnmt3a-deleted mice. Notably, the myeloid disease phenotype induced by Dnmt3a loss was fully transplantable, including the marked hepatomegaly; these data demonstrate that the liver-specific expansion reflects a cell-autonomous mechanism. To assess relative tropism for different target organs, we next performed homing studies where Dnmt3a-deleted bone marrow cells were competed against wild-type counterparts in lethally irradiated hosts. 48 hours after transplantation, we observed increased tropism of the Dnmt3aΔ/Δ BM cells to the liver and spleen, whereas control cells preferentially localized to the bone marrow (difference between homing to bone marrow and spleen/liver p<0.0115, Figure 1C). These data demonstrate that altered homing and tissue tropism of Dnmt3a KO hematopoietic cells promote extramedullary hematopoiesis and liver involvement. ERRBS and gene expression profiles by RNA-seq in stem and progenitor cell populations demonstrated differential regulation of key biologic pathways, including self-renewal, hematopoietic lineage commitment and differentiation, and heterotypic cell-cell interactions. In conclusion, our studies show that ablation of Dnmt3a in the hematopoietic system leads to myeloid transformation in vivo, with cell autonomous liver tropism and marked extramedullary hematopoiesis. These data demonstrate, in addition to its established role in controlling self-renewal, Dnmt3a serves as an important regulator of the myeloid compartment that limits expansion of myeloid progenitors in vivo. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 12 (6) ◽  
pp. 2690-2700 ◽  
Author(s):  
M A Huie ◽  
E W Scott ◽  
C M Drazinic ◽  
M C Lopez ◽  
I K Hornstra ◽  
...  

GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.


2013 ◽  
Vol 79 (12) ◽  
pp. 3813-3821 ◽  
Author(s):  
Jo-Ann Chuah ◽  
Satoshi Tomizawa ◽  
Miwa Yamada ◽  
Takeharu Tsuge ◽  
Yoshiharu Doi ◽  
...  

ABSTRACTSaturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase fromChromobacteriumsp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCsfor 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity.In vitroactivities for polymerization of 3HV and 3HHx monomers were consistent within vivosubstrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases.


Endocrinology ◽  
2013 ◽  
Vol 154 (7) ◽  
pp. 2393-2398 ◽  
Author(s):  
Jose Córdoba-Chacón ◽  
Manuel D. Gahete ◽  
Ana I. Pozo-Salas ◽  
Justo P. Castaño ◽  
Rhonda D. Kineman ◽  
...  

Abstract l-arginine (l-Arg) rapidly stimulates GH and insulin release in vivo. It has been hypothesized that l-Arg stimulates GH release by lowering hypothalamic somatostatin (SST) tone. l-Arg may also act directly at the pituitary to stimulate GH release. Moreover, l-Arg has a direct stimulatory effect on β-cells, which is thought to be blunted by the release of SST from pancreatic δ-cells. To confirm the role of endogenous SST on l-Arg-induced GH and insulin release, wild-type (WT) and SST-knockout (SST-KO) mice were injected with l-Arg (ip; 0.8 g/kg), and pre-/post-injection GH, insulin, and glucose levels were measured. In WT mice, l-Arg evoked a 6-fold increase in circulating GH. However, there was only a modest increase in GH levels in WT pituitary cell cultures treated with l-Arg. In contrast, l-Arg failed to increase GH in SST-KO beyond their already elevated levels. These results further support the hypothesis that the primary mechanism by which l-Arg acutely increases GH in vivo is by lowering hypothalamic SST input to the pituitary and not via direct pituitary effects. Additionally, l-Arg induced a clear first-phase insulin secretion in WT mice, but not in SST-KO. However, SST-KO, but not WT mice, displayed a robust and sustained second-phase insulin release. These results further support a role for endogenous SST in regulating l-Arg-mediated insulin release.


2000 ◽  
Vol 352 (3) ◽  
pp. 717-724 ◽  
Author(s):  
Ying-Ying CHANG ◽  
John E. CRONAN

Escherichia coli pyruvate oxidase (PoxB), a lipid-activated homotetrameric enzyme, is active on both pyruvate and 2-oxobutanoate (‘α-ketobutyrate’), although pyruvate is the favoured substrate. By localized random mutagenesis of residues chosen on the basis of a modelled active site, we obtained several PoxB enzymes that had a markedly decreased activity with the natural substrate, pyruvate, but retained full activity with 2-oxobutanoate. In each of these mutant proteins Val-380had been replaced with a smaller residue, namely alanine, glycine or serine. One of these, PoxB V380A/L253F, was shown to lack detectable pyruvate oxidase activity in vivo; this protein was purified, studied and found to have a 6-fold increase in Km for pyruvate and a 10-fold lower Vmax with this substrate. In contrast, the mutant had essentially normal kinetic constants with 2-oxobutanoate. The altered substrate specificity was reflected in a decreased rate of pyruvate binding to the latent conformer of the mutant protein owing to the V380A mutation. The L253F mutation alone had no effect on PoxB activity, although it increased the activity of proteins carrying substitutions at residue 380, as it did that of the wild-type protein. The properties of the V380A/L253F protein provide new insights into the mode of substrate binding and the unusual activation properties of this enzyme.


1998 ◽  
Vol 180 (23) ◽  
pp. 6342-6351 ◽  
Author(s):  
Roy Magnuson ◽  
Michael B. Yarmolinsky

ABSTRACT The P1 plasmid addiction operon encodes Doc, a toxin that kills plasmid-free segregants, and Phd, an unstable antidote that neutralizes the toxin. Additionally, these products repress transcription of the operon. The antidote binds to two adjacent sites in the promoter. Here we present evidence concerning the regulatory role of the toxin, which we studied with the aid of a mutation,docH66Y. The DocH66Y protein retained the regulatory properties of the wild-type protein, but not its toxicity. In vivo, DocH66Y enhanced repression by Phd but failed to affect repression in the absence of Phd, suggesting that DocH66Y contacts Phd. In vitro, a MalE-DocH66Y fusion protein was found to bind Phd. Binding of toxin to antidote may be the physical basis for the neutralization of toxin. DocH66Y failed to bind DNA in vitro yet enhanced the affinity, cooperativity, and specificity with which Phd bound the operator. Although DocH66Y enhanced the binding of Phd to two adjacent Phd-binding sites, DocH66Y had relatively little effect on the binding of Phd to a single Phd-binding site, indicating that DocH66Y mediates cooperative interactions between adjacent Phd-binding sites. Several electrophoretically distinct protein-DNA complexes were observed with different amounts of DocH66Y relative to Phd. Maximal repression and specificity of DNA binding were observed with subsaturating amounts of DocH66Y relative to Phd. Analogous antidote-toxin pairs appear to have similar autoregulatory circuits. Autoregulation, by dampening fluctuations in the levels of toxin and antidote, may prevent the inappropriate activation of the toxin.


Author(s):  
Peter J. Herring ◽  
Ole Munk

The escal light gland of three different-sized specimens of the deep-sea anglerfish Haplophryne mollis (family Linophrynidae) has been examined by light and electron microscopy. The light gland has a central cavity, with diverging branched ducts which ramify into numerous tightly-packed radial tubules. In the two largest specimens all glandular lumina contain symbiotic bacteria. Except for a thin-walled part of the typical radiating tubules, the epithelial walls of the light gland are of a uniform structure, consisting of flattened basal cells, situated next to the basal lamina, and tall cells extending to the lumen.In the smallest specimen examined the various parts of the light gland were not fully differentiated and only a very few symbiotic bacteria were present; its glandular epithelium differed from that of the two larger specimens by containing many goblet cells, the secretion of which may be important for the initial establishment of the right strain of symbiotic bacteriaObservations on the luminescence of live specimens have shown that the light emission can be rapidly modulated from within the esca. The in vivo flash kinetics are considerably slower than those of Dolopichthys longicornis, but similar to those of both the caruncle exudate of Ceratias holboelli and in vitro anglerfish bacterial luciferase.


Sign in / Sign up

Export Citation Format

Share Document