scholarly journals Transcript encoded on the opposite strand of the human steroid 21-hydroxylase/complement component C4 gene locus

1989 ◽  
Vol 86 (17) ◽  
pp. 6582-6586 ◽  
Author(s):  
Y Morel ◽  
J Bristow ◽  
S E Gitelman ◽  
W L Miller

The gene encoding human adrenal steroid 21-hydroxylase (P450c21) and its highly similar pseudogene are duplicated in tandem with the two genes encoding the fourth component of human serum hemolytic complement (C4). This 60-kilobase gene complex, which lies within the major histocompatibility complex on the short arm of human chromosome 6, has been studied in considerable detail because genetic disorders in steroid 21-hydroxylation and in C4 are common. We have cloned a cDNA encoded by a previously unidentified gene in this region. This gene lies on the strand of DNA opposite from the strand containing the P450c21 and C4 genes, and it overlaps the last exon of P450c21. The newly identified gene encodes mRNAs of 3.5 and 1.8 kilobases that are expressed in the adrenal and in a Leydig cell tumor but are not expressed in nonsteroidogenic tissues. The sequence of the longest cDNA (2.7 kilobases) shows no similarity to known sequences available in two computerized data bases. The 5' end of this sequence is characterized by three repeats, each encoding about 100 amino acids flanked by potential sites for proteolytic cleavage. Although numerous studies have shown that gene deletions causing congenital adrenal hyperplasia occur in this region, none of these gene deletions extends into this newly identified gene, suggesting that it encodes an essential function.

1996 ◽  
Vol 16 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
X Liu ◽  
B Li ◽  
GorovskyMA

Although variants have been identified for every class of histone, their functions remain unknown. We have been studying the histone H2A variant hv1 in the ciliated protozoan Tetrahymena thermophila. Sequence analysis indicates that hv1 belongs to the H2A.F/Z type of histone variants. On the basis of the high degree of evolutionary conservation of this class of histones, they are proposed to have one or more distinct and essential functions that cannot be performed by their major H2A counterparts. Considerable evidence supports the hypothesis that the hv1 protein in T. thermophila and hv1-like proteins in other eukaryotes are associated with active chromatin. In T. thermophila, simple mass transformation and gene replacement techniques have recently become available. In this report, we demonstrate that either the HTA1 gene or the HTA2 gene, encoding the major H2As, can be completely replaced by disrupted genes in the polyploid, transcriptionally active macronucleus, indicating that neither of the two genes is essential. However, only some of the HTA3 genes encoding hv1 can be replaced by disrupted genes, indicating that the H2A.F/Z type variants have an essential function that cannot be performed by the major H2A genes. Thus, an essential gene in T. thermophila can be defined by the fact that it can be partially, but not completely, eliminated from the polyploid macronucleus. To our knowledge, this study represents the first use of gene disruption technology to study core histone gene function in any organism other than yeast and the first demonstration of an essential gene in T. thermophila using these methods. When a rescuing plasmid carrying a wild-type HTA3 gene was introduced into the T. thermophila cells, the endogenous chromosomal HTA3 could be completely replaced, defining a gene replacement strategy that can be used to analyze the function of essential genes.


2004 ◽  
Vol 186 (20) ◽  
pp. 6698-6705 ◽  
Author(s):  
Jason A. Opdyke ◽  
Ju-Gyeong Kang ◽  
Gisela Storz

ABSTRACT A previous bioinformatics-based search for small RNAs in Escherichia coli identified a novel RNA named IS183. The gene encoding this small RNA is located between and on the opposite strand of genes encoding two transcriptional regulators of the acid response, gadX (yhiX) and gadW (yhiW). Given that IS183 is encoded in the gad gene cluster and because of its role in regulating acid response genes reported here, this RNA has been renamed GadY. We show that GadY exists in three forms, a long form consisting of 105 nucleotides and two processed forms, consisting of 90 and 59 nucleotides. The expression of this small RNA is highly induced during stationary phase in a manner that is dependent on the alternative sigma factor σS. Overexpression of the three GadY RNA forms resulted in increased levels of the mRNA encoding the GadX transcriptional activator, which in turn caused increased levels of the GadA and GadB glutamate decarboxylases. A promoter mutation which abolished gadY expression resulted in a reduction in the amount of gadX mRNA during stationary phase. The gadY gene was shown to overlap the 3′ end of the gadX gene, and this overlap region was found to be necessary for the GadY-dependent accumulation of gadX mRNA. We suggest that during stationary phase, GadY forms base pairs with the 3′-untranslated region of the gadX mRNA and confers increased stability, allowing for gadX mRNA accumulation and the increased expression of downstream acid resistance genes.


2006 ◽  
Vol 188 (19) ◽  
pp. 6802-6807 ◽  
Author(s):  
Clemente I. Montero ◽  
Derrick L. Lewis ◽  
Matthew R. Johnson ◽  
Shannon B. Conners ◽  
Elizabeth A. Nance ◽  
...  

ABSTRACT In the genome of the hyperthermophilic bacterium Thermotoga maritima, TM0504 encodes a putative signaling peptide implicated in population density-dependent exopolysaccharide formation. Although not noted in the original genome annotation, TM0504 was found to colocate, on the opposite strand, with the gene encoding ssrA, a hybrid of tRNA and mRNA (tmRNA), which is involved in a trans-translation process related to ribosome rescue and is ubiquitous in bacteria. Specific DNA probes were designed and used in real-time PCR assays to follow the separate transcriptional responses of the colocated open reading frames (ORFs) during transition from exponential to stationary phase, chloramphenicol challenge, and syntrophic coculture with Methanococcus jannaschii. TM0504 transcription did not vary under normal growth conditions. Transcription of the tmRNA gene, however, was significantly up-regulated during chloramphenicol challenge and in T. maritima bound in exopolysaccharide aggregates during methanogenic coculture. The significance of the colocation of ORFs encoding a putative signaling peptide and tmRNA in T. maritima is intriguing, since this overlapping arrangement (tmRNA associated with putative small ORFs) was found to be conserved in at least 181 bacterial genomes sequenced to date. Whether peptides related to TM0504 in other bacteria play a role in quorum sensing is not yet known, but their ubiquitous colocalization with respect to tmRNA merits further examination.


2019 ◽  
Author(s):  
Andrew B. Morgenthaler ◽  
Wallis R. Kinney ◽  
Christopher C. Ebmeier ◽  
Corinne M. Walsh ◽  
Daniel J. Snyder ◽  
...  

AbstractNew enzymes often evolve by amplification and divergence of genes encoding enzymes with a weak ability to provide a new function. Experimental studies to date have followed the evolutionary trajectory of an amplified gene, but have not addressed other mutations in the genome when fitness is limited by an evolving gene. We have adapted Escherichia coli in which an enzyme’s weak secondary activity has been recruited to serve an essential function. While the gene encoding the “weak-link” enzyme amplified in all eight populations, mutations improving the new activity occurred in only one. This beneficial allele quickly swept the amplified array, displacing the parental allele. Most adaptive mutations, however, occurred elsewhere in the genome. We have identified the mechanisms by which three of the classes of mutations increase fitness. These mutations may be detrimental once a new enzyme has evolved, and require reversion or compensation, leading to permanent changes in the genome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 999-1007
Author(s):  
R G Gregerson ◽  
L Cameron ◽  
M McLean ◽  
P Dennis ◽  
J Strommer

Abstract In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes.


2021 ◽  
Vol 11 (6) ◽  
pp. 526
Author(s):  
Yejin Lee ◽  
Youn Jung Kim ◽  
Hong-Keun Hyun ◽  
Jae-Cheoun Lee ◽  
Zang Hee Lee ◽  
...  

Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III and dentin dysplasia (DD) Type II. While DGI Type I is an OI-related syndromic phenotype caused mostly by monoallelic mutations in the genes encoding collagen type I alpha 1 chain (COL1A1) and collagen type I alpha 2 chain (COL1A2). In this study, we recruited families with non-syndromic dentin defects and performed candidate gene sequencing for DSPP exons and exon/intron boundaries. Three unrelated Korean families were further analyzed by whole-exome sequencing due to the lack of the DSPP mutation, and heterozygous COL1A2 mutations were identified: c.3233G>A, p.(Gly1078Asp) in Family 1 and c.1171G>A, p.(Gly391Ser) in Family 2 and 3. Haplotype analysis revealed different disease alleles in Families 2 and 3, suggesting a mutational hotspot. We suggest expanding the molecular genetic etiology to include COL1A2 for isolated dentin defects in addition to DSPP.


2002 ◽  
Vol 46 (6) ◽  
pp. 1823-1830 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Fabrizio Pantanella ◽  
Francesco Giuliani ◽  
Maria Cristina Thaller ◽  
Gianfranco Amicosante ◽  
...  

ABSTRACT The sequenced chromosome of Caulobacter crescentus CB15 encodes a hypothetical protein that exhibits significant similarity (30 to 35% identical residues) to metallo-β-lactamases of subclass B3. An allelic variant of this gene (divergent by 3% of its nucleotides) was cloned in Escherichia coli from C. crescentus type strain DSM4727. Expression studies confirmed the metallo-β-lactamase activity of its product, CAU-1. The enzyme produced in E. coli was purified by two ion-exchange chromatography steps. CAU-1 contains a 29-kDa polypeptide with an alkaline isoelectric pH (>9), and unlike the L1 enzyme of Stenotrophomonas maltophilia, the native form is monomeric. Kinetic analysis revealed a preferential activity toward penicillins, carbapenems, and narrow-spectrum cephalosporins, while oxyimino cephalosporins were poorly or not hydrolyzed. Affinities for the various β-lactams were poor overall (Km values were always >100 μM and often >400 μM). The interaction with divalent ion chelators appeared to occur by a mechanism similar to that prevailing in other members of subclass B3. In C. crescentus, the CAU-1 enzyme is produced independently of β-lactam exposure and, interestingly, the bla CAU determinant is bracketed by three other genes, including two genes encoding enzymes involved in methionine biosynthesis and a gene encoding a putative transcriptional regulator, in an operon-like structure. The CAU-1 enzyme is the first example of a metallo-β-lactamase in a member of the α subdivision of the class Proteobacteria.


2005 ◽  
Vol 51 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Hidenori Hayashi ◽  
Takashi Abe ◽  
Mitsuo Sakamoto ◽  
Hiroki Ohara ◽  
Toshimichi Ikemura ◽  
...  

The aim of this study was to identify a novel 1,4-β-xylanase gene from the mixed genome DNA of human fecal bacteria without bacterial cultivation. Total DNA was isolated from a population of bacteria extracted from fecal microbiota. Using PCR, the gene fragments encoding 5 different family 10 xylanases (xyn10A, xyn10B, xyn10C, xyn10D, and xyn10E) were found. Amino acid sequences deduced from these genes were highly homologous with those of xylanases from anaerobic intestinal bacteria such as Bacteroides spp. and Prevotella spp. Self-organizing map (SOM) analysis revealed that xynA10 was classified into Bacteroidetes. To confirm that one of these genes encodes an active enzyme, a full-length xyn10A gene was obtained using nested primers specific to the internal fragments and random primers. The xyn10A gene encoding the xylanase Xyn10A consists of 1146 bp and encodes a protein of 382 amino acids and a molecular weight of 43 552. Xyn10A was a single module novel xylanase. Xyn10A was purified from a recombinant Escherichia coli strain and characterized. This enzyme was optimally active at 40 °C and stable up to 50 °C at pH 6.5 and over the pH range 4.0–11.0 at 25 °C. In addition, 2 ORFs (ORF1 and ORF2) were identified upstream of xyn10A. These results suggested that many unidentified xylanolytic bacteria exist in the human gut and may contribute to the breakdown of xylan which contains dietary fiber.Key words: xylanase, human gut, fecal microbiota, phylogenetic analysis, self-organizing map.


2013 ◽  
Vol 79 (18) ◽  
pp. 5566-5575 ◽  
Author(s):  
Jens Buchholz ◽  
Andreas Schwentner ◽  
Britta Brunnenkan ◽  
Christina Gabris ◽  
Simon Grimm ◽  
...  

ABSTRACTExchange of the nativeCorynebacterium glutamicumpromoter of theaceEgene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutateddapApromoter variants led to a series ofC. glutamicumstrains with gradually reduced growth rates and PDHC activities. Upon overexpression of thel-valine biosynthetic genesilvBNCE, all strains producedl-valine. Among these strains,C. glutamicum aceEA16 (pJC4ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of thepqoandppcgenes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities,C. glutamicum aceEA16 Δpqo Δppc(pJC4ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter)l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression ofilvBNCDinstead ofilvBNCEtransformed thel-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with aYP/Sof 0.24 mol per mol of glucose and aQPof 6.9 mM per h [0.8 g/(liter × h)]. The replacement of theaceEpromoter by thedapA-A16 promoter in the twoC. glutamicuml-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate thatC. glutamicumstrains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.


Sign in / Sign up

Export Citation Format

Share Document