scholarly journals NMR Structures and Interactions of Temporin-1Tl and Temporin-1Tb with Lipopolysaccharide Micelles

2011 ◽  
Vol 286 (27) ◽  
pp. 24394-24406 ◽  
Author(s):  
Anirban Bhunia ◽  
Rathi Saravanan ◽  
Harini Mohanram ◽  
Maria L. Mangoni ◽  
Surajit Bhattacharjya

Temporins are a group of closely related short antimicrobial peptides from frog skin. Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, plays important roles in the activity of temporins. Earlier studies have found that LPS induces oligomerization of temporin-1Tb (TB) thus preventing its translocation across the outer membrane and, as a result, reduces its activity on Gram-negative bacteria. On the other hand, temporin-1Tl (TL) exhibits higher activity, presumably because of lack of such oligomerization. A synergistic mechanism was proposed, involving TL and TB in overcoming the LPS-mediated barrier. Here, to gain insights into interactions of TL and TB within LPS, we investigated the structures and interactions of TL, TB, and TL+TB in LPS micelles, using NMR and fluorescence spectroscopy. In the context of LPS, TL assumes a novel antiparallel dimeric helical structure sustained by intimate packing between aromatic-aromatic and aromatic-aliphatic residues. By contrast, independent TB has populations of helical and aggregated conformations in LPS. The LPS-induced aggregated states of TB are largely destabilized in the presence of TL. Saturation transfer difference NMR studies have delineated residues of TL and TB in close contact with LPS and enhanced interactions of these two peptides with LPS, when combined together. Fluorescence resonance energy transfer and 31P NMR have pointed out the proximity of TL and TB in LPS and conformational changes of LPS, respectively. Importantly, these results provide the first structural insights into the mode of action and synergism of antimicrobial peptides at the level of the LPS-outer membrane.

2019 ◽  
Author(s):  
Sara Alvira ◽  
Daniel W. Watkins ◽  
Lucy Troman ◽  
William J. Allen ◽  
James Lorriman ◽  
...  

SUMMARYThe outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic β-barrel Outer-Membrane Proteins (OMPs) – are secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones e.g. SurA, which prevent aggregation. OMPs are then offloaded to the β-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL: an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane ‘insertase’ YidC) contacts SurA and BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Our results show the trans-membrane proton-motive-force (PMF) acts at distinct stages of protein secretion: for SecA-driven translocation across the inner-membrane through SecYEG; and to communicate conformational changes via SecDF to the BAM machinery. The latter presumably ensures efficient passage of OMPs. These interactions provide insights of inter-membrane organisation, the importance of which is becoming increasingly apparent.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Federica A. Falchi ◽  
Elisa A. Maccagni ◽  
Simone Puccio ◽  
Clelia Peano ◽  
Cristina De Castro ◽  
...  

ABSTRACTIn Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction oflptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting thatlptA41affects LPS transport. Indeed,lptA41is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors oflptA41. One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion inmlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation inopgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCELipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective inlptAthat exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


2018 ◽  
Vol 84 (12) ◽  
Author(s):  
Qian Li ◽  
Manuel Montalban-Lopez ◽  
Oscar P. Kuipers

ABSTRACTLantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial compounds containing lanthionine and methyl-lanthionine residues. Nisin, one of the most extensively studied and used lantibiotics, has been shown to display very potent activity against Gram-positive bacteria, and stable resistance is rarely observed. By binding to lipid II and forming pores in the membrane, nisin can cause the efflux of cellular constituents and inhibit cell wall biosynthesis. However, the activity of nisin against Gram-negative bacteria is much lower than that against Gram-positive bacteria, mainly because lipid II is located at the inner membrane, and the rather impermeable outer membrane in Gram-negative bacteria prevents nisin from reaching lipid II. Thus, if the outer membrane-traversing efficiency of nisin could be increased, the activity against Gram-negative bacteria could, in principle, be enhanced. In this work, several relatively short peptides with activity against Gram-negative bacteria were selected from literature data to be fused as tails to the C terminus of either full or truncated nisin species. Among these, we found that one of three tails (tail 2 [T2; DKYLPRPRPV], T6 [NGVQPKY], and T8 [KIAKVALKAL]) attached to a part of nisin displayed improved activity against Gram-negative microorganisms. Next, we rationally designed and reengineered the most promising fusion peptides. Several mutants whose activity significantly outperformed that of nisin against Gram-negative pathogens were obtained. The activity of the tail 16 mutant 2 (T16m2) construct against several important Gram-negative pathogens (i.e.,Escherichia coli,Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa,Enterobacter aerogenes) was increased 4- to 12-fold compared to that of nisin. This study indicates that the rational design of nisin can selectively and significantly improve its outer membrane-permeating capacity as well as its activity against Gram-negative pathogens.IMPORTANCELantibiotics are antimicrobial peptides that are highly active against Gram-positive bacteria but that have relatively poor activity against most Gram-negative bacteria. Here, we modified the model lantibiotic nisin by fusing parts of it to antimicrobial peptides with known activity against Gram-negative bacteria. The appropriate selection of peptidic moieties that could be attached to (parts of) nisin could lead to a significant increase in its inhibitory activity against Gram-negative bacteria. Using this strategy, hybrids that outperformed nisin by displaying 4- to 12-fold higher levels of activity against relevant Gram-negative bacterial species were produced. This study shows the power of modified peptide engineering to alter target specificity in a desired direction.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sara Alvira ◽  
Daniel W Watkins ◽  
Lucy Troman ◽  
William J Allen ◽  
James S Lorriman ◽  
...  

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic β-barrel Outer-Membrane Proteins (OMPs) – are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the β-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) – an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane ‘insertase’ YidC – contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2010 ◽  
Vol 192 (24) ◽  
pp. 6329-6335 ◽  
Author(s):  
A. K. Fenton ◽  
M. Kanna ◽  
R. D. Woods ◽  
S.-I. Aizawa ◽  
R. E. Sockett

ABSTRACT The Bdellovibrio are miniature “living antibiotic” predatory bacteria which invade, reseal, and digest other larger Gram-negative bacteria, including pathogens. Nutrients for the replication of Bdellovibrio bacteria come entirely from the digestion of the single invaded bacterium, now called a bdelloplast, which is bound by the original prey outer membrane. Bdellovibrio bacteria are efficient digesters of prey cells, yielding on average 4 to 6 progeny from digestion of a single prey cell of a genome size similar to that of the Bdellovibrio cell itself. The developmental intrabacterial cycle of Bdellovibrio is largely unknown and has never been visualized “live.” Using the latest motorized xy stage with a very defined z-axis control and engineered periplasmically fluorescent prey allows, for the first time, accurate return and visualization without prey bleaching of developing Bdellovibrio cells using solely the inner resources of a prey cell over several hours. We show that Bdellovibrio bacteria do not follow the familiar pattern of bacterial cell division by binary fission. Instead, they septate synchronously to produce both odd and even numbers of progeny, even when two separate Bdellovibrio cells have invaded and develop within a single prey bacterium, producing two different amounts of progeny. Evolution of this novel septation pattern, allowing odd progeny yields, allows optimal use of the finite prey cell resources to produce maximal replicated, predatory bacteria. When replication is complete, Bdellovibrio cells exit the exhausted prey and are seen leaving via discrete pores rather than by breakdown of the entire outer membrane of the prey.


Sign in / Sign up

Export Citation Format

Share Document