scholarly journals HIV-1 p17 Matrix Protein Interacts with Heparan Sulfate Side Chain of CD44v3, Syndecan-2, and Syndecan-4 Proteoglycans Expressed on Human Activated CD4+ T Cells Affecting Tumor Necrosis Factor α and Interleukin 2 Production

2011 ◽  
Vol 286 (22) ◽  
pp. 19541-19548 ◽  
Author(s):  
Maria A. De Francesco ◽  
Manuela Baronio ◽  
Claudio Poiesi

HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4+ T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4+ T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4+ T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.

2000 ◽  
Vol 7 (2-4) ◽  
pp. 89-101 ◽  
Author(s):  
Elke Schönherr ◽  
Heinz-JüRgen Hausser

The extracellular matrix (ECM) as well as soluble mediators like cytokines can influence the behavior of cells in very distinct as well as cooperative ways. One group of ECM molecules which shows an especially broad cooperativety with cytokines and growth factors are the proteoglycans. Proteoglycans can interact with their core proteins as well as their glycosaminoglycan chains with cytokines. These interactions can modify the binding of cytokines to their cell surface receptors or they can lead to the storage of the soluble factors in the matrix. Proteoglycans themselves may even have cytokine activity. In this review we describe different proteoglycans and their interactions and relationships with cytokines and we discuss in more detail the extracellular regulation of the activity of transforming growth factor-β (TGF-β) by proteoglycans and other ECM molecules. In the third part the interaction of heparan sulfate chains with fibroblast growth factor-2 (FGF-2, basic FGF) as a prototype example for the interaction of heparin-binding cytokines with heparan sulfate proteoglycans is presented to illustrate the different levels of mutual dependence of the cytokine network and the ECM.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2760-2769 ◽  
Author(s):  
Claudio Casoli ◽  
Elisa Vicenzi ◽  
Andrea Cimarelli ◽  
Giacomo Magnani ◽  
Paolo Ciancianaini ◽  
...  

The influence of human T-cell leukemia/lymphoma virus type II (HTLV-II) in individuals also infected with HIV-1 is poorly understood. To evaluate the reciprocal influence of HTLV-II and HIV-1 infection, primary peripheral blood mononuclear cell (PBMC) cultures from coinfected individuals were established in the presence of interleukin 2 (IL-2). In these cultures, the kinetics of HTLV-II replication always preceded those of HIV-1. Noteworthy, the kinetics of HIV-1 production were inversely correlated to the HTLV-II proviral load in vivo and its replication ex vivo. These observations suggested a potential interaction between the 2 retroviruses. In this regard, the levels of IL-2, IL-6, and tumor necrosis factor- (TNF-) were measured in the same coinfected PBMC cultures. Endogenous IL-2 was not produced, whereas IL-6 and TNF- were secreted at levels compatible with their known ability to up-regulate HIV-1 expression. The HIV-suppressive CC-chemokines RANTES, macrophage inflammatory protein-1 (MIP-1), and MIP-1β were also determined in IL-2–stimulated PBMC cultures. Of interest, their kinetics and concentrations were inversely related to those of HIV-1 replication. Experiments were performed in which CD8+ T cells or PBMCs from HTLV-II monoinfected individuals were cocultivated with CD4+ T cells from HIV-1 monoinfected individuals separated by a semipermeable membrane in the presence or absence of antichemokine neutralizing antibodies. The results indicate that HTLV-II can interfere with the replicative potential of HIV-1 by up-regulating viral suppressive CC-chemokines and, in particular, MIP-1. This study is the first report indicating that HTLV-II can influence HIV replication, at least in vitro, via up-regulation of HIV-suppressive chemokines.


2008 ◽  
Vol 21 (2) ◽  
pp. 189-202 ◽  
Author(s):  
Manuela Avolio ◽  
Sonia Caracciolo ◽  
Giorgio Tosti ◽  
Luana Vollero ◽  
Simona Fiorentini ◽  
...  
Keyword(s):  
T Cells ◽  

2015 ◽  
Vol 89 (21) ◽  
pp. 11019-11029 ◽  
Author(s):  
Frauke Beilstein ◽  
Linda Obiang ◽  
Hélène Raux ◽  
Yves Gaudin

ABSTRACTThe matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system.IMPORTANCEThe immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5274-5274
Author(s):  
Waseem Qasim ◽  
Ilenia Chatziandreou ◽  
Adrian Thrasher ◽  
Hubert Gaspar

Abstract T cell suicide gene therapy is designed to permit the use of donor T cells for their powerful anti-leukaemic and anti-viral effects following haematopoietic stem cell transplantation. In the event of graft versus host disease (GVHD) such cells can be eliminated through the administration of suicide-gene dependent prodrugs. Though the feasibility of the strategy has been demonstrated in clinical trials, there has been a lower incidence of GVHD than anticipated and evidence of impaired anti-viral immunity. Current vectors under clinical investigation are based on retroviral delivery systems and require T cells to be actively dividing at the time of vector exposure to for successful transduction. The process of ex-vivo activation to induce mitogenesis has been shown to impair subsequent functional potential, and even under optimized conditions using combinations of anti-CD3 and anti-CD28 antibodies, T cells become prone to exhaustion. It has been previously reported that lentiviral vectors permit T cell transduction without the need for mitogenic stimulation if used in combination with certain cytokines such as Interleukin-2 (IL-2) or Interleukin-7 (IL-7). Thus we have adapted a self-inactivating lentiviral vector system based on HIV-1 and encoding strong promoter elements derived from the long terminal repeat (LTR) regions of Spleen Focus forming virus (SFFV) for the delivery of suicide genes to T cells. The Woodchuck hepatitis virus post-transcriptional regulatory element and the central polypurine tract element of HIV-1 have been incorporated to enhance transduction efficiency and increase transgene expression. T cells cultured in the presence of either IL-2 or IL-7 alone, or in combination could be transduced at between 20–30% efficiency following a single round of exposure to virus pseudotyped with the vesicular stomatitis virus envelope or the feline endogenous leukaemia virus envelope. By the end of the procedure there were minimal changes in T cell surface phenotype, preservation of niave/memory subsets and retention of virus specific populations as quantified by tetramer staining of Cytomegalovirus (CMV) specific T cells. Functional analysis indicated preservation of proliferative responses to autologous dendritic cells pulsed with CMV antigen. In addition, strong responses in mixed lymphocyte culture indicated intact allo-reactive responses. Cells transduced to express a fusion construct encoding a variant herpes simplex thymidine kinase fused to the truncated CD34 selection marker could be enriched to >95% purity by a single round of anti-CD34 magnetic bead selection. The functional integrity of the suicide gene was confirmed by elimination of enriched cells following exposure to the prodrugs Gancilcovir and Aciclovir. In conclusion, non-dividing T cells transduced with suicide gene/selection transgenes using lentiviral constructs, retain phenotypic characteristics and functional responsiveness.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.


1994 ◽  
Vol 179 (2) ◽  
pp. 513-522 ◽  
Author(s):  
T R Kollmann ◽  
M Pettoello-Mantovani ◽  
X Zhuang ◽  
A Kim ◽  
M Hachamovitch ◽  
...  

A small animal model that could be infected with human immunodeficiency virus 1 (HIV-1) after peripheral inoculation would greatly facilitate the study of the pathophysiology of acute HIV-1 infection. The utility of SCID mice implanted with human fetal thymus and liver (SCID-hu mice) for studying peripheral HIV-1 infection in vivo has been hampered by the requirement for direct intraimplant injection of HIV-1 and the continued restriction of the resultant HIV-1 infection to the human thymus and liver (hu-thy/liv) implant. This may have been due to the very low numbers of human T cells present in the SCID-hu mouse peripheral lymphoid compartment. Since the degree of the peripheral reconstitution of SCID-hu mice with human T cells may be a function of the hu-thy/liv implant size, we increased the quantity of hu-thy/liv tissue implanted under the renal capsule and implanted hu-thy/liv tissue under the capsules of both kidneys. This resulted in SCID-hu mice in which significant numbers of human T cells were detected in the peripheral blood, spleens, and lymph nodes. After intraimplant injection of HIV-1 into these modified SCID-hu mice, significant HIV-1 infection was detected by quantitative coculture not only in the hu-thy/liv implant, but also in the spleen and peripheral blood. This indicated that HIV-1 infection can spread from the thymus to the peripheral lymphoid compartment. More importantly, a similar degree of infection of the hu-thy/liv implant and peripheral lymphoid compartment occurred after peripheral intraperitoneal inoculation with HIV-1. Active viral replication was indicated by the detection of HIV-1 gag DNA, HIV-1 gag RNA, and spliced tat/rev RNA in the hu-thy/liv implants, peripheral blood mononuclear cells (PBMC), spleens, and lymph nodes of these HIV-1-infected SCID-hu mice. As a first step in using our modified SCID-hu mouse model to investigate the pathophysiological consequences of HIV-1 infection, the effect of HIV-1 infection on the expression of human cytokines shown to enhance HIV-1 replication was examined. Significantly more of the HIV-1-infected SCID-hu mice expressed mRNA for human tumor necrosis factors alpha and beta, and interleukin 2 in their spleens, lymph nodes, and PBMC than did uninfected SCID-hu mice. This suggested that HIV-1 infection in vivo can stimulate the expression of cytokine mRNA by human T cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 19 (5) ◽  
pp. 746-751 ◽  
Author(s):  
André G. Loxton ◽  
Gillian F. Black ◽  
Kim Stanley ◽  
Gerhard Walzl

ABSTRACTThe mycobacterial heparin-binding hemagglutinin (HBHA) protein induces a potent gamma interferon (IFN-γ) response in latent tuberculosis (TB) infection and is a candidate vaccine and diagnostic antigen. We have assessed HBHA-specific intracellular IFN-γ, interleukin-2 (IL-2), and IL-17 production by CD4+T cells in TB cases and household contacts (HHCs) as well as the level of secreted IFN-γ in whole-blood culture supernatant. HHCs were further classified as tuberculin skin test (TST) positive or negative, and the group was also divided as HIV positive or negative. Our study revealed that HBHA induces multifunctional IFN-γ-, IL-2-, and IL-17-coexpressing CD4+T cells in HHCs but not in active TB cases; however, IFN-γ levels in culture supernatant did not differ between participant groups. Further studies are needed to completely understand how HBHA induces immune responses in different disease groups.


Sign in / Sign up

Export Citation Format

Share Document