scholarly journals MEK Is a Key Modulator for TLR5-induced Interleukin-8 and MIP3α Gene Expression in Non-transformed Human Colonic Epithelial Cells

2004 ◽  
Vol 279 (24) ◽  
pp. 25179-25188 ◽  
Author(s):  
Sang Hoon Rhee ◽  
Andrew C. Keates ◽  
Mary P. Moyer ◽  
Charalabos Pothoulakis
2006 ◽  
Vol 97 (6) ◽  
pp. 1317-1327 ◽  
Author(s):  
Dezheng Zhao ◽  
Yanai Zhan ◽  
Huiyan Zeng ◽  
Mary P. Moyer ◽  
Christos S. Mantzoros ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 435-443 ◽  
Author(s):  
Manoj K. Puthia ◽  
Jia Lu ◽  
Kevin S. W. Tan

ABSTRACT Blastocystis is a ubiquitous enteric protozoan found in the intestinal tracts of humans and a wide range of animals. Evidence accumulated over the last decade suggests association of Blastocystis with gastrointestinal disorders involving diarrhea, abdominal pain, constipation, nausea, and fatigue. Clinical and experimental studies have associated Blastocystis with intestinal inflammation, and it has been shown that Blastocystis has potential to modulate the host immune response. Blastocystis is also reported to be an opportunistic pathogen in immunosuppressed patients, especially those suffering from AIDS. However, nothing is known about the parasitic virulence factors and early events following host-parasite interactions. In the present study, we investigated the molecular mechanism by which Blastocystis activates interleukin-8 (IL-8) gene expression in human colonic epithelial T84 cells. We demonstrate for the first time that cysteine proteases of Blastocystis ratti WR1, a zoonotic isolate, can activate IL-8 gene expression in human colonic epithelial cells. Furthermore, we show that NF-κB activation is involved in the production of IL-8. In addition, our findings show that treatment with the antiprotozoal drug metronidazole can avert IL-8 production induced by B. ratti WR1. We also show for the first time that the central vacuole of Blastocystis may function as a reservoir for cysteine proteases. Our findings will contribute to an understanding of the pathobiology of a poorly studied parasite whose public health importance is increasingly recognized.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212850 ◽  
Author(s):  
Stephen M. Matthews ◽  
Melanie A. Eshelman ◽  
Arthur S. Berg ◽  
Walter A. Koltun ◽  
Gregory S. Yochum

2015 ◽  
Vol 308 (9) ◽  
pp. C750-C757 ◽  
Author(s):  
Svetlana M. Nabokina ◽  
Mel Brendan Ramos ◽  
Judith E. Valle ◽  
Hamid M. Said

Microbiota of the large intestine synthesize considerable amount of vitamin B1 in the form of thiamine pyrophosphate (TPP). There is a specific high-affinity regulated carrier-mediated uptake system for TPP in human colonocytes (product of the SLC44A4 gene). The mechanisms of regulation of SLC44A4 gene expression are currently unknown. In this study, we characterized the SLC44A4 minimal promoter region and identified transcription factors important for basal promoter activity in colonic epithelial cells. The 5′-regulatory region of the SLC44A4 gene (1,022 bp) was cloned and showed promoter activity upon transient transfection into human colonic epithelial NCM460 cells. With the use of a series of 5′- and 3′-deletion luciferase reporter constructs, the minimal genomic region that required basal transcription of the SLC44A4 gene expression was mapped between nucleotides −178 and +88 (using the distal transcriptional start site as +1). Mutational analysis performed on putative cis-regulatory elements established the involvement of ETS/ELF3 [E26 transformation-specific sequence (ETS) proteins], cAMP-responsive element (CRE), and SP1/GC-box sequence motifs in basal SLC44A4 promoter activity. By means of EMSA, binding of ELF3 and CRE-binding protein-1 (CREB-1) transcription factors to the SLC44A4 minimal promoter was shown. Contribution of CREB into SLC44A4 promoter activity was confirmed using NCM460 cells overexpressing CREB. We also found high expression of ELF3 and CREB-1 in colonic (NCM460) compared with noncolonic (ARPE19) cells, suggesting their possible contribution to colon-specific pattern of SLC44A4 expression. This study represents the first characterization of the SLC44A4 promoter and reports the importance of both ELF3 and CREB-1 transcription factors in the maintenance of basal promoter activity in colonic epithelial cells.


2003 ◽  
Vol 124 (4) ◽  
pp. A465-A466
Author(s):  
Dezheng Zhao ◽  
Sabina Kuhnt-Moore ◽  
Huiyan Zeng ◽  
Jack S. Wu ◽  
Mary P. Moyer ◽  
...  

1999 ◽  
Vol 97 (3) ◽  
pp. 385-390 ◽  
Author(s):  
Andrew J. WILSON ◽  
Keith BYRON ◽  
Peter R. GIBSON

The migration of colonic epithelial cells (restitution) is an important event in the repair of mucosal injuries. Interleukin-8 (IL-8) is a physiological initiator of the chemotactic migration of leucocytes. This study aimed to determine whether IL-8 had a similar effect on migration in an in vitro model of wounded colonic epithelium. Cell migration over 24 h was assessed in circular wounds made in confluent monolayers of the human colon cancer cell line LIM1215. This migration was stimulated in a concentration-dependent manner by IL-8, with maximal effects of approx. 1.75-fold above basal migration. The motogenic effect of IL-8 was mediated independently of effects on cell proliferation. In contrast, it was partially dependent upon gene transcription and protein synthesis and involved the activation of pertussis-toxin-sensitive G-proteins. The short-chain fatty acids, acetate, propionate, butyrate and valerate, the activator of protein kinase C (phorbol-12-myristate-13-acetate) and tumour necrosis factor-α (TNF-α) all stimulated the secretion of IL-8. However, only the motogenic effect of TNF-α was dependent upon IL-8. In conclusion, IL-8 stimulated cell migration in an in vitro model of colonic epithelium, whereas the motogenic effect of at least one physiologically relevant factor was dependent upon an increase in its endogenous levels. If IL-8 stimulates colonic epithelial restitution in vivo, this would have ramifications for the control of repair processes following wounding of the colonic mucosa.


Sign in / Sign up

Export Citation Format

Share Document