scholarly journals De novoNAD synthesis is required for intracellular replication ofCoxiella burnetii, the causative agent of the neglected zoonotic disease Q fever

2018 ◽  
Vol 293 (48) ◽  
pp. 18636-18645 ◽  
Author(s):  
Mebratu A. Bitew ◽  
Chen Ai Khoo ◽  
Nitika Neha ◽  
David P. De Souza ◽  
Dedreia Tull ◽  
...  
Author(s):  
Yuwadee Somsap ◽  
Patcharaporn Boonroumkaew ◽  
Attawit Somsap ◽  
Rutchanee Rodpai ◽  
Lakkhana Sadaow ◽  
...  

A rare ocular dirofilariasis case along with the clinical characteristics, treatment, and outcome is reported. A whitish roundworm (10.6 cm long and 0.5 mm width) emerged from the pterygium, a triangular tissue growth on the cornea of the eye, of a male patient. The worm had a rounded anterior part, mouth without lips, smooth cuticular surface, and short rounded posterior tail with spicules: these features suggested that it was a male Dirofilaria sp. Molecular identification confirmed that the worm belonged to Dirofilaria immitis. This is the first molecular confirmation that D. immitis is a causative agent of ocular dirofilariasis in Thailand: dirofilariasis is a newly emerging zoonotic disease. Physicians should be alert to zoonotic filarial worms and knowledgeable about treatment of this disease.


2021 ◽  
Vol 66 (4) ◽  
pp. 229-236
Author(s):  
E. I. Bondarenko ◽  
E. S. Filimonova ◽  
E. I. Krasnova ◽  
E. V. Krinitsina ◽  
S. E. Tkachev

Coxiella burnetii is the causative agent of Q fever (coxiellosis), which, in addition to acute manifestations, often occurs in a latent form, is prone to chronic course and, in the absence of antibiotic therapy, has a high risk of disability or death. As a result of the presence of a wide range of clinical manifestations specific to other infectious diseases, the use of laboratory test methods (LTM) is required to make a diagnosis. The presence of Q fever anthropurgic foci in the Novosibirsk region was described in the 90s of the last century, but due attention to its laboratory diagnostics is not paid in this region. The aim of the study was to identify genetic and serological markers of the causative agent, C. burnetii, in patients of the Novosibirsk region who were admitted for treatment with fever with suspected tick-borne infections (TBIs). DNA marker of the causative agent of Q fever was detected in blood samples by real time PCR in 9 out of 325 patients. In three patients, the presence of C. burnetii DNA was confirmed by sequencing of the IS1111 and htpB gene fragments. In ELISA tests, antibodies against the causative agent of coxiellosis were detected in the blood sera of 4 patients with positive results of PCR analysis. Contact with tick was registered in 7 out of 9 patients who had C. burnetii DNA and lacked markers of other TBIs. Six people were infected in the Novosibirsk region, two suffered from tick’s bite in Altai, and one case was from the Republic of Kyrgyzstan. Thus, a complex approach using both PCR analysis and ELISA provided the identification of markers of the Q fever causative agent in patients admitted with suspected TBIs, thereby differentiating it from other infections. Contact with ticks in most cases suggests that infection with C. burnetii had a transmissible pathway.


Author(s):  
Rita Cruz ◽  
Carmen Vasconcelos-Nobrega ◽  
Fernando Esteves ◽  
Catarina Coelho ◽  
Ana Sofia Ferreira ◽  
...  

Q fever, a widespread zoonotic disease caused by Coxiella burnetiid, produces a complex and polymorphic disease in humans. As a zoonotic disease, control in animals will influence the level of disease seen in humans, thus resulting in interesting one health perspectives for disease control. Here the authors describe the clinical manifestations in animals and humans, as well as the current diagnostic methods available and the strategies for disease control. A review on the published information regarding Q fever as a disease with impact for veterinary public health and public health is presented.


Author(s):  
Radhakrishna Sahu ◽  
Deepak Bhiwa Rawool ◽  
Pankaj Dhaka ◽  
Jay Prakash Yadav ◽  
Sidharth Prasad Mishra ◽  
...  

2019 ◽  
Vol Volume 12 ◽  
pp. 701-706 ◽  
Author(s):  
Gustavo Echeverría ◽  
Armando Reyna-Bello ◽  
Elizabeth Minda-Aluisa ◽  
Maritza Celi-Erazo ◽  
Lisbeth Olmedo ◽  
...  

2020 ◽  
Vol 295 (21) ◽  
pp. 7391-7403 ◽  
Author(s):  
Eric Martinez ◽  
Sylvaine Huc-Brandt ◽  
Solène Brelle ◽  
Julie Allombert ◽  
Franck Cantet ◽  
...  

The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system–mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host–pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro. This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein–protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.


2014 ◽  
Vol 7 (9) ◽  
pp. 715-719 ◽  
Author(s):  
Osama B. Mohammed ◽  
Abdulrahman A. Jarelnabi ◽  
Riyadh S. Aljumaah ◽  
Mohammed A. Alshaikh ◽  
Amel O. Bakhiet ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
J. Njeru ◽  
K. Henning ◽  
M. W. Pletz ◽  
R. Heller ◽  
H. Neubauer

Author(s):  
Alice Latinne ◽  
Ben Hu ◽  
Kevin J. Olival ◽  
Guangjian Zhu ◽  
Libiao Zhang ◽  
...  

AbstractBats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. We used a Bayesian statistical framework and sequence data from all known bat-CoVs (including 630 novel CoV sequences) to study their macroevolution, cross-species transmission, and dispersal in China. We find that host-switching was more frequent and across more distantly related host taxa in alpha-than beta-CoVs, and more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.


Sign in / Sign up

Export Citation Format

Share Document