betaine lipids
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica M. Deutsch ◽  
Olakunle A. Jaiyesimi ◽  
Kelly A. Pitts ◽  
Jay Houk ◽  
Blake Ushijima ◽  
...  

Stony coral tissue loss disease, first observed in Florida in 2014, has now spread along the entire Florida Reef Tract and on reefs in many Caribbean countries. The disease affects a variety of coral species with differential outcomes, and in many instances results in whole-colony mortality. We employed untargeted metabolomic profiling of Montastraea cavernosa corals affected by stony coral tissue loss disease to identify metabolic markers of disease. Herein, extracts from apparently healthy, diseased, and recovered Montastraea cavernosa collected at a reef site near Ft. Lauderdale, Florida were subjected to liquid-chromatography mass spectrometry-based metabolomics. Unsupervised principal component analysis reveals wide variation in metabolomic profiles of healthy corals of the same species, which differ from diseased corals. Using a combination of supervised and unsupervised data analyses tools, we describe metabolite features that explain variation between the apparently healthy corals, between diseased corals, and between the healthy and the diseased corals. By employing a culture-based approach, we assign sources of a subset of these molecules to the endosymbiotic dinoflagellates, Symbiodiniaceae. Specifically, we identify various endosymbiont- specific lipid classes, such as betaine lipids, glycolipids, and tocopherols, which differentiate samples taken from apparently healthy corals and diseased corals. Given the variation observed in metabolite fingerprints of corals, our data suggests that metabolomics is a viable approach to link metabolite profiles of different coral species with their susceptibility and resilience to numerous coral diseases spreading through reefs worldwide.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chiara E. Giossi ◽  
Sónia Cruz ◽  
Felisa Rey ◽  
Rúben Marques ◽  
Tânia Melo ◽  
...  

Bryopsidales (Chlorophyta) are cultured and consumed in several regions of the planet and are known for their high nutritional value and bioprospection potential, due to a high content of relevant polar lipids and polysaccharides. Among other characteristic features, these marine algae are known for possessing unique photosynthetic pigment-protein complexes and for the absence (in nearly all species investigated) of a functional xanthophyll cycle, a ubiquitous photoprotection mechanism present in most algae and plants. With the aim of characterizing the photophysiology of this atypical group of algae, we investigated the changes in pigment content and polar lipidome of two Bryopsidales species (Codium tomentosum and Bryopsis plumosa) exposed for 7 days to low or high irradiance (20 vs. 1,000 μmol photons m–2 s–1). Our results show that high light has a strong effect on the pigment composition, triggering the time-dependent accumulation of all-trans-neoxanthin (t-Neo) and violaxanthin (Viola). High light-acclimated macroalgae also displayed a shift in the characteristic polar lipidome, including a trend of accumulation of lyso-glycolipids, and highly unsaturated phospholipids and betaine lipids. We hypothesize that the observed shifts on the lipid composition could promote the interaction between t-Neo and Viola with the siphonaxanthin–chlorophyll–protein complexes (SCP) of photosystem II (PSII) within the thylakoid membranes of the chloroplasts. Light induced changes in pigment and lipid composition could contribute to the fitness of Bryopsidales algae by reducing damages to the photosynthetic apparatus under increased irradiance.


2021 ◽  
Author(s):  
Jessica M Deutsch ◽  
Olakunle Jaiyesimi ◽  
Kelly Pitts ◽  
Jay Houk ◽  
Blake Ushijima ◽  
...  

Stony coral tissue loss disease, first observed in Florida in 2014, has now spread along the entire Florida Reef Tract and on reefs in many Caribbean countries. The disease affects a variety of coral species with differential outcomes, and in many instances results in whole-colony mortality. We employed untargeted metabolomic profiling of Montastraea cavernosa corals affected by stony coral tissue loss disease to identify metabolic markers of disease. Herein, extracts from apparently healthy, diseased, and recovered corals, Montastraea cavernosa, collected at a reef site near Ft. Lauderdale, Florida were subjected to liquid-chromatography mass spectrometry-based metabolomics. Unsupervised principal component analysis reveals wide variation in metabolomic profiles of healthy corals of the same species, which differ from diseased corals. Using a combination of supervised and unsupervised data analyses tools, we describe metabolite features that explain variation between the apparently healthy corals, between diseased corals, and between the healthy and the diseased corals. By employing a culture-based approach, we assign sources of a subset of these molecules to the endosymbiotic dinoflagellates, Symbiodiniaceae. Specifically, we identify various endosymbiont- specific lipid classes, such as betaine lipids, glycolipids, and tocopherols, which differentiate samples taken from apparently healthy corals and diseased corals. Given the variation observed in metabolite fingerprints of corals, our data suggests that metabolomics is a viable approach to link metabolite profiles of different coral species with their susceptibility and resilience to numerous coral diseases spreading through reefs worldwide.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 996
Author(s):  
Vasiliy V. Nokhsorov ◽  
Lyubov V. Dudareva ◽  
Svetlana V. Senik ◽  
Nadezhda K. Chirikova ◽  
Klim A. Petrov

The lipid composition of two species of vascular plants, Equisetum variegatum Schleich. ex. Web. and E. scirpoides Michx., growing in the permafrost zone (Northeastern Yakutia, the Pole of Cold of the Northern Hemisphere), with average daily air temperatures in summer of +17.8 °C, in autumn of +0.6 °C, and in winter of −46.7 °C, was comparatively studied. The most significant seasonal trend of lipid composition was an accumulation of PA in both horsetail species in the autumn–winter period. Cold acclimation in autumn was accompanied by a decrease in the proportion of bilayer-forming lipids (phosphatidylcholine in the non-photosynthetic membranes and MGDG in photosynthetic membranes), an increase in the desaturation degree due to the accumulation of triene fatty acids (E. scirpoides), and an accumulation of betaine lipids O-(1,2-diacylglycero)-N,N,N-trimethylhomoserine (DGTS). The inverse changes in some parameters were registered in the winter period, including an increase in the proportion of “bilayer” lipids and decrease in the unsaturation degree. According to the data obtained, it can be concluded that high levels of accumulation of membrane lipids and polyunsaturated FAs (PUFAs), as well as the presence of Δ5 FAs in lipids, are apparently features of cold hardening of perennial herbaceous plants in the cryolithozone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nolwenn Guéguen ◽  
Damien Le Moigne ◽  
Alberto Amato ◽  
Juliette Salvaing ◽  
Eric Maréchal

The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid deriving from a secondary endosymbiosis, limited by four membranes, the outermost one being connected to the endomembrane system. Recent cell imaging and proteomic studies suggest that at least some cytosolic LDs might be associated to the surface of the complex plastid, via still uncharacterized contact sites. The carbon length and number of double bonds of the acyl groups contained in the TAG molecules depend on their origin. De novo synthesis produces long-chain saturated or monounsaturated fatty acids (SFA, MUFA), whereas subsequent maturation processes lead to very long-chain polyunsaturated FA (VLC-PUFA). TAG composition in SFA, MUFA, and VLC-PUFA reflects therefore the metabolic context that gave rise to the formation of the LD, either via an early partitioning of carbon following FA de novo synthesis and/or a recycling of FA from membrane lipids, e.g., plastid galactolipids or endomembrane phosphor- or betaine lipids. In this review, we address the relationship between cytosolic LDs and the complex membrane compartmentalization within stramenopile cells, the metabolic routes leading to TAG accumulation, and the physiological conditions that trigger LD production, in response to various environmental factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiago A. Conde ◽  
Daniela Couto ◽  
Tânia Melo ◽  
Margarida Costa ◽  
Joana Silva ◽  
...  

AbstractThere is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC–HR–ESI–MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.


2020 ◽  
Vol 11 ◽  
Author(s):  
Eleonora Silvano ◽  
Mingyu Yang ◽  
Mathias Wolterink ◽  
Helge-Ansgar Giebel ◽  
Meinhard Simon ◽  
...  

The marine roseobacter-clade affiliated cluster (RCA) represents one of the most abundant groups of bacterioplankton in the global oceans, particularly in temperate and sub-polar regions. They play a key role in the biogeochemical cycling of various elements and are important players in oceanic climate-active trace gas metabolism. In contrast to copiotrophic roseobacter counterparts such as Ruegeria pomeroyi DSS-3 and Phaeobacter sp. MED193, RCA bacteria are truly pelagic and have smaller genomes. We have previously shown that RCA bacteria do not appear to encode the PlcP-mediated lipid remodeling pathway, whereby marine heterotrophic bacteria remodel their membrane lipid composition in response to phosphorus (P) stress by substituting membrane glycerophospholipids with alternative glycolipids or betaine lipids. In this study, we report lipidomic analysis of six RCA isolates. In addition to the commonly found glycerophospholipids such as phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), RCA bacteria synthesize a relatively uncommon phospholipid, acylphosphatidylglycerol, which is not found in copiotrophic roseobacters. Instead, like the abundant SAR11 clade, RCA bacteria upregulate ornithine lipid biosynthesis in response to P stress, suggesting a key role of this aminolipid in the adaptation of marine heterotrophs to oceanic nutrient limitation.


2020 ◽  
Author(s):  
Eleonora Silvano ◽  
Mingyu Yang ◽  
Mathias Wolterink ◽  
Helge-Ansgar Giebel ◽  
Meinhard Simon ◽  
...  

AbstractThe marine roseobacter-clade Affiliated cluster (RCA) represents one of the most abundant groups of bacterioplankton in the global oceans, particularly in temperate and sub-polar regions. They play a key role in the biogeochemical cycling of various elements and are important players in oceanic climate-active trace gas metabolism. In contrast to copiotrophic roseobacter counterparts such as Ruegeria pomeroyi DSS-3 and Phaeobacter sp. MED193, RCA bacteria are truly pelagic and have smaller genomes. We have previously shown that RCA bacteria do not appear to encode the PlcP-mediated lipid remodelling pathway, whereby marine heterotrophic bacteria remodel their membrane lipid composition in response to phosphorus (P) stress by substituting membrane glycerophospholipids with alternative glycolipids or betaine lipids. In this study, we report lipidomic analysis of six RCA isolates. In addition to the commonly found glycerophospholipids such as phosphatidylglycerol and phosphatidylethanolamine, RCA bacteria synthesise a relatively uncommon phospholipid, acylphosphatidylglycerol, which is not found in copiotrophic roseobacters. Instead, like the abundant SAR11 clade, RCA bacteria upregulate ornithine lipid biosynthesis in response to P stress, suggesting a key role of this aminolipid in the adaptation of marine heterotrophs to oceanic nutrient limitation.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1434
Author(s):  
Susana S. Aveiro ◽  
Tânia Melo ◽  
Ana Figueiredo ◽  
Pedro Domingues ◽  
Hugo Pereira ◽  
...  

Polar lipids from microalgae have aroused greater interest as a natural source of omega-3 (n-3) polyunsaturated fatty acids (PUFA), an alternative to fish, but also as bioactive compounds with multiple applications. The present study aims to characterize the polar lipid profile of cultured microalga Emiliania huxleyi using hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC–MS) and fatty acids (FA) analysis by gas chromatography (GC–MS). The lipidome of E. huxleyi revealed the presence of distinct n-3 PUFA (40% of total FA), namely docosahexaenoic acid (22:6n-3) and stearidonic acid (18:4n-3), which give this microalga an increased commercial value as a source of n-3 PUFA present in the form of polar lipids. A total of 134 species of polar lipids were identified and some of these species, particularly glycolipids, have already been reported for their bioactive properties. Among betaine lipids, the diacylglyceryl carboxyhydroxymethylcholine (DGCC) class is the least reported in microalgae. For the first time, monomethylphosphatidylethanolamine (MMPE) has been found in the lipidome of E. huxleyi. Overall, this study highlights the potential of E. huxleyi as a sustainable source of high-value polar lipids that can be exploited for different applications, namely human and animal nutrition, cosmetics, and pharmaceuticals.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 273
Author(s):  
Sarah F. Martin ◽  
Mary K. Doherty ◽  
Eliane Salvo-Chirnside ◽  
Seshu R. Tammireddy ◽  
Jiaxiuyu Liu ◽  
...  

Marine phytoplankton, comprising cyanobacteria, micro- and pico-algae are key to photosynthesis, oxygen production and carbon assimilation on Earth. The unicellular green picoalga Ostreococcus tauri holds a key position at the base of the green lineage of plants, which makes it an interesting model organism. O. tauri has adapted to survive in low levels of nitrogen and phosphorus in the open ocean and also during rapid changes in the levels of these nutrients in coastal waters. In this study, we have employed untargeted proteomic and lipidomic strategies to investigate the molecular responses of O. tauri to low-nitrogen and low-phosphorus environments. In the absence of external nitrogen, there was an elevation in the expression of ammonia and urea transporter proteins together with an accumulation of triglycerides. In phosphate-limiting conditions, the expression levels of phosphokinases and phosphate transporters were increased, indicating an attempt to maximise scavenging opportunities as opposed to energy conservation conditions. The production of betaine lipids was also elevated, highlighting a shift away from phospholipid metabolism. This finding was supported by the putative identification of betaine synthase in O. tauri. This work offers additional perspectives on the complex strategies that underpin the adaptive processes of the smallest known free-living eukaryote to alterations in environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document