scholarly journals Fc γ receptor IIIa / CD16a processing correlates with the expression of glycan-related genes in human natural killer cells

2020 ◽  
pp. jbc.RA120.015516
Author(s):  
Kashyap R Patel ◽  
Maria C Rodriguez Benavente ◽  
W. Walter Lorenz ◽  
Emily M Mace ◽  
Adam W. Barb

Many therapeutic monoclonal antibodies require binding to Fc γ Receptors (FcγRs) for full effect and increasing the binding affinity increases efficacy. Preeminent among the five activating human FcγRs is FcγRIIIa / CD16a expressed by natural killer (NK) cells. CD16a is heavily processed and recent reports indicate that the composition of the five CD16a asparagine(N)-linked carbohydrates (glycans) impacts affinity. These observations indicate that specifically manipulating CD16a N-glycan composition in CD16a-expressing effector cells including NK cells may improve treatment efficacy. However, it is unclear if modifying the expression of select genes that encode processing enzymes in CD16a-expressing effector cells is sufficient to affect N-glycan composition. We identified substantial processing differences using a glycoproteomics approach by comparing CD16a isolated from two NK cell lines, NK92 and YTS, with CD16a expressed by HEK293F cells and previous reports of CD16a from primary NK cells. Gene expression profiling by RNAseq and qRT-PCR revealed expression levels for glycan-modifying genes which correlated with CD16a glycan composition. These results identified a high degree of variability between the processing of the same human protein by different human cell types. N-glycan processing correlated with the expression of glycan modifying genes and thus explained the substantial differences in CD16a processing by NK cells of different origins.

2021 ◽  
Vol 22 (7) ◽  
pp. 3489
Author(s):  
Takayuki Morimoto ◽  
Tsutomu Nakazawa ◽  
Ryosuke Matsuda ◽  
Fumihiko Nishimura ◽  
Mitsutoshi Nakamura ◽  
...  

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 335-341 ◽  
Author(s):  
Michael R. Verneris

Abstract Two of the major complications that limit the efficacy of allogeneic hematopoietic cell transplantation (allo-HCT) are disease relapse and GVHD. Due to their rapid recovery early after allo-HCT and their ability to kill malignant targets without prior exposure, natural killer (NK) cells have been considered one of the main effector cells that mediate early GVL reactions. Conversely, regulatory T ells (Tregs) have proven to be critical in facilitating self-tolerance. Both murine and human studies have demonstrated a significant role for Tregs in the modulation of GVHD after allo-HCT. This article reviews the mechanisms of how these 2 cell types carry out these functions, focusing on the post-allo-HCT period. Surprisingly, relatively few studies have addressed how Tregs and NK cells interact with one another and whether these interactions are antagonistic. Although preclinical studies suggest active cross-talk between NK cells and Tregs, early clinical studies have not shown a detrimental impact of Treg therapy on relapse. Despite this, interruption of tolerogenic signals may enhance the efficacy of NK effector functions. Methods to transiently impair Treg functions and augment NK cell alloreactivity will be discussed.


Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 3146-3151 ◽  
Author(s):  
Megan A. Cooper ◽  
Todd A. Fehniger ◽  
Sarah C. Turner ◽  
Kenneth S. Chen ◽  
Bobak A. Ghaheri ◽  
...  

Abstract During the innate immune response to infection, monocyte-derived cytokines (monokines), stimulate natural killer (NK) cells to produce immunoregulatory cytokines that are important to the host's early defense. Human NK cell subsets can be distinguished by CD56 surface density expression (ie, CD56bright and CD56dim). In this report, it is shown that CD56bright NK cells produce significantly greater levels of interferon-γ, tumor necrosis factor-β, granulocyte macrophage–colony-stimulating factor, IL-10, and IL-13 protein in response to monokine stimulation than do CD56dim NK cells, which produce negligible amounts of these cytokines. Further, qualitative differences in CD56bright NK-derived cytokines are shown to be dependent on the specific monokines present. For example, the monokine IL-15 appears to be required for type 2 cytokine production by CD56bright NK cells. It is proposed that human CD56bright NK cells have a unique functional role in the innate immune response as the primary source of NK cell–derived immunoregulatory cytokines, regulated in part by differential monokine production.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Abstract Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2706-2706 ◽  
Author(s):  
Shivani Srivastava ◽  
Hailin Feng ◽  
Shuhong Zhang ◽  
Jing Liang ◽  
Patrick Squiban ◽  
...  

Abstract Abstract 2706 Poster Board II-682 Follicular lymphoma is incurable with the current chemo- or chemoimmunotherapy with median survival of 8–12 years. Relapse free survival after each subsequent therapy steadily decreases, resulting in an expected median survival of 4.5 years following initial relapse. Hence new treatment strategies are needed. Natural killer (NK) cells are important effector cells in mediating the anti-lymphoma effect of rituximab. Indeed, antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanisms of action of rituximab with NK cells being important effector cells. However, in addition to ADCC, NK cells also exert natural cytotoxicity against tumor cells, which is modulated by a balance of inhibitory and activating signals through NK cell receptors. NK cell function is inhibited when their inhibitory killer immunoglobulin-like receptors (KIR) are ligated by their cognate MHC class I antigens on tumor targets. The novel agent IPH2101 (1-7F9) is a fully human monoclonal antibody directed against KIR2DL receptor that blocks the interaction of KIR with its HLA-C ligands breaking NK cell tolerance to autologous tumor cells. We investigated whether the combination of the IPH2101and Rituximab will augment the NK cell mediated cytotoxicity against CD20+ lymphoma targets as compared to rituximab alone. Raji cells are human CD20+ Burkitt lymphoma cell line cells that expresses HLA-A*03,- (ligand to inhibitory KIR3DL2); -B*71[Bw6] (no inhibitory KIR-Ligand) and -Cw*03,w*04 (group 1 and 2 of HLA-C ligands to inhibitory KIR2DL2/3 and KIR2DL1), and were chosen for study because they have HLA-C antigens that ligate the inhibitory KIR2DL2/3 and KIR2DLI receptors, making them a good target to test our hypothesis of inhibiting inhibitory KIR. NK cells were isolated from normal donor PBMC (peripheral blood mononuclear cells) with the Miltenyi NK isolation Kit. Using LDH release based cytotoxicity assay, we show (Figure 1) that the treatment of target Raji cells with Rituximab significantly enhanced natural cytotoxicity of the purified NK cells against Raji cells. IPH2101alone treatment of NK cells also significantly enhanced the cytotoxicity of Raji cells, however, the combination of IPH2101treated NK cells against Rituximab treated Raji cells significantly enhanced cytotoxicity beyond that observed with each agent alone. Effector: Target (E:T) ratios of 14:1 or less, from more than 5 random donors showed similar results indicating a synergistic, or at least and additive effect ( representative experiment shown Figure 1) . In these experiments purified NK cells were treated with 30ug/ml of IPH2101for 30 min and Raji targets were treated with 0.1-30ug/ml of Rituximab for 30 min. NK cells in the presence or absence of IPH2101were co-cultured with Raji cells in the presence or absence of Rituximab for 4 hour in a 96 well plate. NK cytotoxicity was assessed with an LDH release based assay. Our results suggest that there is a positive cooperation between natural cytotoxicity mediated through KIR-MHC blockade and that mediated by ADCC. Indeed, wee have shown that the blockade of KIR-MHC class I interaction by anti-KIR blocking antibody (IPH2101) augments the cytotoxicity of freshly isolated normal donor NK cells against CD20+ lymphoma cell lines as compared to rituximab alone, providing a rationale for the clinical investigation of the combination of IPH2101 (1-7F9) and rituximab in non-Hodgkin's lymphoma Disclosures: Squiban: Innate pharma: Employment.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Michael A. Caligiuri

Abstract Natural killer (NK) cells were discovered more than 30 years ago. NK cells are large granular lymphocytes that belong to the innate immune system because unlike T or B lymphocytes of the adaptive or antigen-specific immune system, NK cells do not rearrange T-cell receptor or immunoglobulin genes from their germline configuration. During the past 2 decades there has been a substantial gain in our understanding of what and how NK-cells “see,” lending important insights into their functions and purpose in normal immune surveillance. The most recent discoveries in NK-cell receptor biology have fueled translational research that has led to remarkable results in treating human malignancy.


1991 ◽  
Vol 173 (6) ◽  
pp. 1451-1461 ◽  
Author(s):  
N Suzuki ◽  
T Suzuki ◽  
E G Engleman

In recent reports we have described the generation of natural killer (NK) lines devoid of CD3/TCR structures but with apparent specificity for allogeneic target cells. Using one such NK line as an immunogen, we now report the generation of two monoclonal antibodies (mAbs), designated 2-13 and 5-38, which bind selectively to the majority of CD3-, CD16+, CD56+ lymphocytes and inhibit the lysis of specific allogeneic target cells by a panel of alloreactive NK lines. By contrast, these mAbs had no effect on classical NK cell mediated lysis of K562 cells or major histocompatibility-restricted T cell-mediated cytolysis. Immunoprecipitation of radiolabeled NK lines followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the target molecules of both mAbs have a molecular mass of approximately 180 kD. Leu 19, a well-described anti-CD56 mAb, precipitated a 180 kD protein from NK cells, and the binding of Leu 19 to NK cells was blocked by pretreatment with both 2-13 and 5-38. However, in contrast to these mAbs, Leu 19 had no effect on the cytolytic activity of allospecific NK cells. Sequential immunoprecipitation analysis revealed that all three mAbs recognized distinct molecular species of CD56. We interpret these findings as indicating that multiple isoforms of CD56 are differentially expressed on NK lines and play critical roles in the recognition/interaction of these cells with their specific allogeneic targets.


2021 ◽  
Vol 11 ◽  
Author(s):  
Meng Guo ◽  
Chen Sun ◽  
Yuping Qian ◽  
Liye Zhu ◽  
Na Ta ◽  
...  

Adoptive natural killer (NK) cell transfer has been demonstrated to be a promising immunotherapy approach against malignancies, but requires the administration of sufficient activated cells for treatment effectiveness. However, the paucity of clinical-grade to support the for large-scale cell expansion limits its feasibility. Here we developed a feeder-based NK cell expansion approach that utilizes OX40L armed NK-92 cell with secreting neoleukin-2/15 (Neo-2/15), a hyper-stable mimetic with a high affinity to IL-2Rβγ. The novel feeder cells (NK92-Neo2/15-OX40L) induced the expansion of NK cells with a 2180-fold expansion (median; 5 donors; range, 1767 to 2719) after 21 days of co-culture without added cytokines. These cells were highly cytotoxic against Raji cells and against several solid tumors in vivo. Mechanistically, NK92-Neo2/15-OX40L induced OX40 and OX40L expression on expanded NK cells and promoted the OX40-OX40L positive feedback loop, thus boosting NK cell function. Our data provided a novel NK cell expansion mechanism and insights into OX40-OX40L axis regulation of NK cell expansion.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Sign in / Sign up

Export Citation Format

Share Document