immunoregulatory cytokines
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 21)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Payal Grover ◽  
Peeyush N. Goel ◽  
Mark I. Greene

T regulatory cells suppress a variety of immune responses to self-antigens and play a role in peripheral tolerance maintenance by limiting autoimmune disorders, and other pathological immune responses such as limiting immune reactivity to oncoprotein encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability and affects functional activity. Mutations in the master regulator FOXP3 and related components have been linked to autoimmune diseases in humans, such as IPEX, and a scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of immunosuppressive mechanisms to limit an immune response by targeting effector cells, including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell cytolysis, metabolic perturbation, directing the maturation and function of antigen-presenting cells (APC) and secretion of extracellular vesicles for the development of immunological tolerance. In this review, several regulatory mechanisms have been highlighted and discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tanya E. Keenan ◽  
Jennifer L. Guerriero ◽  
Romualdo Barroso-Sousa ◽  
Tianyu Li ◽  
Tess O’Meara ◽  
...  

AbstractImmune checkpoint inhibitors (ICIs) have minimal therapeutic effect in hormone receptor-positive (HR+ ) breast cancer. We present final overall survival (OS) results (n = 88) from a randomized phase 2 trial of eribulin ± pembrolizumab for patients with metastatic HR+ breast cancer, computationally dissect genomic and/or transcriptomic data from pre-treatment tumors (n = 52) for molecular associations with efficacy, and identify cytokine changes differentiating response and ICI-related toxicity (n = 58). Despite no improvement in OS with combination therapy (hazard ratio 0.95, 95% CI 0.59–1.55, p = 0.84), immune infiltration and antigen presentation distinguished responding tumors, while tumor heterogeneity and estrogen signaling independently associated with resistance. Moreover, patients with ICI-related toxicity had lower levels of immunoregulatory cytokines. Broadly, we establish a framework for ICI response in HR+ breast cancer that warrants diagnostic and therapeutic validation. ClinicalTrials.gov Registration: NCT03051659.


2021 ◽  
Vol 22 (15) ◽  
pp. 8134
Author(s):  
Joanna Olkowska-Truchanowicz ◽  
Agata Białoszewska ◽  
Aneta Zwierzchowska ◽  
Alicja Sztokfisz-Ignasiak ◽  
Izabela Janiuk ◽  
...  

Endometriosis is a common gynaecological disorder characterized by the ectopic growth of endometrial tissue outside the uterine cavity. It is associated with chronic pelvic inflammation and autoimmune reactivity manifesting by autoantibody production and abrogated cellular immune responses. Endometriotic peritoneal fluid contains various infiltrating leucocyte populations and a bulk of proinflammatory and immunoregulatory cytokines. However, the nature and significance of the peritoneal milieu in women with endometriosis still remains obscure. Therefore, the aim of the present study was to investigate the immunoregulatory activity of the peritoneal fluid (PF) from women with endometriosis. The peritoneal fluid samples were collected during laparoscopic surgery from 30 women with and without endometriosis. Immunoregulatory cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF) and chemokines (CCL2, CCL5, CXCL8 and CXCL9) were evaluated in PF and culture supernatants generated by unstimulated and CD3/CD28/IL-2-stimulated CD4+ T cells cultured in the presence of PF. The effect of PF on the generation of Treg and Th17 cells in CD4+ T cell cultures, as well as the natural cytotoxic activity of peripheral blood mononuclear cells, was also investigated. Concentrations of IL-6, IL-10, CCL2, CXCL8 and CXCL9 were significantly upregulated in the PF from women with endometriosis when compared to control women, whereas concentrations of other cytokines and chemokines were unaffected. The culturing of unstimulated and CD3/CD28/IL-2-stimulated CD4+ T cells in the presence of endometriotic PF resulted in the downregulation of their IL-2, IFN-γ, IL-17A and TNF production as compared to culture medium alone. On the other side, endometriotic PF significantly stimulated the production of IL-4 and IL-10. Endometriotic PF also stimulated the release of CCL2 and CXCL8, whereas the production of CCL5 and CXCL9 was downregulated. Endometriotic PF stimulated the generation of Treg cells and had an inhibitory effect on the generation of Th17 cells in cultures of CD4+ T cells. It also inhibited the NK cell cytotoxic activity of the peripheral blood lymphocytes. These results strongly imply that the PF from patients with endometriosis has immunoregulatory/immunosuppressive activity and shifts the Th1/Th2 cytokine balance toward the Th2 response, which may account for deviation of local and systemic immune responses. However, a similar trend, albeit not a statistically significant one, was also observed in case of PF from women without endometriosis, thus suggesting that peritoneal milieu may in general display some immunoregulatory/immunosuppressive properties. It should be stressed, however, that our present observations were made on a relatively small number of PF samples and further studies are needed to reveal possible mechanism(s) responsible for this phenomenon.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
K Va. Bentem ◽  
M Bos ◽  
C Va. de. Keur ◽  
H Kapsenberg ◽  
L Lashley ◽  
...  

Abstract Study question Is the number of regulatory T-cells (Tregs) and immunoregulatory cytokines in the decidua basalis of oocyte donation (OD) pregnancies different compared to naturally conceived pregnancies? Summary answer This study suggests that the immunoregulation at the fetal-maternal interface in OD pregnancies with a higher amount of fetal-maternal HLA mismatches appears to be altered. What is known already Tregs and related immunoregulatory cytokines, such as interleukins, transforming growth factor-β, and galectin–1, play a key role in maintaining tolerance at the decidua basalis in human pregnancy. Previous studies observed decreased numbers of decidual Tregs in miscarriage and preeclamptic pregnancies. These complications occur in higher frequencies in OD pregnancies, which are characterized by more fetal-maternal human leukocyte antigen (HLA) mismatches compared with naturally conceived (NC) and non-donor in vitro fertilization (IVF) pregnancies, since the fetus obtains paternal and donor-derived HLA genes. Consequently, the maternal immune system has to cope with greater immunogenetic dissimilarity. Involved immunoregulatory mechanisms however remain poorly understood. Study design, size, duration: This case-control study included 27 OD, 11 IVF, and 16 NC placentas of uncomplicated pregnancies, which were collected after delivery at 37–42 weeks of gestation between 2005 and 2013. Clinical data, maternal peripheral blood and umbilical cord blood were collected. Participants/materials, setting, methods Decidua basalis was dissected from the placentas, and processed to formalin-fixed, paraffin-embedded slices (4 µm). Immunohistochemical staining for FOXP3, interleukin 10, interleukin 6, galectin–1, transforming growth factor-β, and Flt–1 was performed. Semi-quantitative (FOXP3+ Tregs) and computerized analysis (cytokines), using Image-J software, were executed. Maternal peripheral blood and fetal umbilical cord blood were typed for HLA class I and II, using the Sequence Specific Oligonucleotides PCR technique, to calculate the number of fetal-maternal HLA mismatches. Main results and the role of chance All the deciduae basalis of OD, IVF and NC pregnancies showed FOXP3+ Tregs. No significant differences were found when comparing the three groups for the mean number of FOXP3+ Tregs. However, when the amount of fetal-maternal HLA mismatches was related to the percentage of FOXP3+ Tregs, the Tregs were significantly higher in pregnancies with 4–6 HLA class I mismatches (n = 16), than in those with 0–3 HLA class I mismatches (n = 38; p = 0.029). Furthermore, OD pregnancies express less interleukin 10, interleukin 6, galectin–1 and Flt–1 in the decidua basalis compared to NC pregnancies. Moreover, the amount of interleukin 10 was significantly lower with 3–4 fetal-maternal HLA class II mismatches (p = 0.032). Limitations, reasons for caution This study is limited by a small sample size. Moreover, only term placentas were collected. It would be worthwhile investigating immunological alterations in the decidua throughout the whole gestation, since maternal adaptation of the fetal allograft could be more prominent early in pregnancy. Wider implications of the findings: Unravelling the mechanisms of immunomodulation during OD pregnancy, reflected by a high level of fetal-maternal dissimilarity, could help to reach the ultimate goal in transplantation; the induction of donor-specific tolerance. In addition, it might help to understand the development of complications in OD pregnancy. Trial registration number Not applicable


2021 ◽  
Vol 25 (1) ◽  
pp. 42-55
Author(s):  
Matthew Sharp ◽  
Jacob Wilson ◽  
Matthew Stefan ◽  
Raad Gheith ◽  
Ryan Lowery ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jean-François Bach

Initially described for allergic diseases, the hygiene hypothesis was extended to autoimmune diseases in the early 2000s. A historical overview allows appreciation of the development of this concept over the last two decades and its discussion in the context of evolution. While the epidemiological data are convergent, with a few exceptions, the underlying mechanisms are multiple and complex. A major question is to determine what is the respective role of pathogens, bacteria, viruses, and parasites, versus commensals. The role of the intestinal microbiota has elicited much interest, but is it a cause or a consequence of autoimmune-mediated inflammation? Our hypothesis is that both pathogens and commensals intervene. Another question is to dissect what are the underlying cellular and molecular mechanisms. The role of immunoregulatory cytokines, in particular interleukin-10 and TGF beta is probably essential. An important place should also be given to ligands of innate immunity receptors present in bacteria, viruses or parasites acting independently of their immunogenicity. The role of Toll-Like Receptor (TLR) ligands is well documented including via TLR ligand desensitization.


Author(s):  
Asma Boumaza ◽  
Laetitia Gay ◽  
Soraya Mezouar ◽  
Eloïne Bestion ◽  
Aïssatou Bailo Diallo ◽  
...  

Abstract Background Covid-19 clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during Covid-19 and if monocytes and macrophages could be infected by SARS-CoV-2. Methods Monocytes and monocyte-derived macrophages from Covid-19 patients and controls were infected with SARS-CoV-2, and extensively investigated with immunofluorescence, viral RNA extraction and quantification, total RNA extraction followed by reverse transcription and q-PCR using specific primers, supernatant cytokines (IL-10, TNF-α, IL-1β, IFN-β, TGF-β1 and IL-6), flow cytometry. The effect of M1- versus M2-type or no polarization prior to infection was assessed. Results SARS-CoV-2 efficiently infected monocytes and MDMs but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In Covid-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. Conclusion SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of Covid-19 progression.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chien-Chang Chen ◽  
Rong-Fu Chen ◽  
Jheng-Syuan Shao ◽  
Yun-Ting Li ◽  
Yu-Chi Wang ◽  
...  

Abstract Background Our previous studies demonstrated that adipose-derived mesenchymal stromal cells (ASCs) have immunomodulatory effects that prolong allograft survival in a rodent hind-limb allotransplant model. In this study, we investigated whether the effects of immunomodulation by ASCs on allograft survival are correlated with B cell regulation. Methods B cells isolated from splenocytes were cocultured with ASCs harvested from adipose tissue from rodent groin areas for in vitro experiments. In an in vivo study, hind-limb allotransplantation from Brown-Norway to Lewis rats was performed, and rats were treated with ASCs combined with short-term treatment with anti-lymphocyte serum (ALS)/cyclosporine (CsA) as immunosuppressants. Peripheral blood and transplanted tissue were collected for further analysis. Result An in vitro study revealed that ASCs significantly suppressed lipopolysaccharide-activated B cell proliferation and increased the percentage of Bregs. The levels of immunoregulatory cytokines, such as TGF-β1 and IL-10, were significantly increased in supernatants of stimulated B cells cocultured with ASCs. The in vivo study showed that treatment with ASCs combined with short-term ALS/CsA significantly reduced the B cell population in alloskin tissue, increased the proportion of circulating CD45Ra+/Foxp3+ B cells, and decreased C4d expression in alloskin. Conclusion ASCs combined with short-term immunosuppressant treatment prolong allograft survival and are correlated with B cell regulation, C4d expression and the modulation of immunoregulatory cytokines.


Cell Reports ◽  
2020 ◽  
Vol 33 (1) ◽  
pp. 108219
Author(s):  
Lauren M. Browning ◽  
Caroline Miller ◽  
Michal Kuczma ◽  
Maciej Pietrzak ◽  
Yu Jing ◽  
...  

2020 ◽  
Author(s):  
Asma Boumaza ◽  
Laetitia Gay ◽  
Soraya Mezouar ◽  
Aïssatou Bailo Diallo ◽  
Moise Michel ◽  
...  

AbstractTo date, the Covid-19 pandemic affected more than 18 million individuals and caused more than 690, 000 deaths. Its clinical expression is pleiomorphic and severity is related to age and comorbidities such as diabetes and hypertension. The pathophysiology of the disease relies on aberrant activation of immune system and lymphopenia that has been recognized as a prognosis marker. We wondered if the myeloid compartment was affected in Covid-19 and if monocytes and macrophages could be infected by SARS-CoV-2. We show here that SARS-CoV-2 efficiently infects monocytes and macrophages without any cytopathic effect. Infection was associated with the secretion of immunoregulatory cytokines (IL-6, IL-10, TGF-β) and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In addition, we found that in vitro macrophage polarization did not account for the permissivity to SARS-CoV-2, since M1-and M2-type macrophages were similarly infected. Finally, in a cohort of 76 Covid-19 patients ranging from mild to severe clinical expression, all circulating monocyte subsets were decreased, likely related to massive emigration into tissues. Monocytes from Covid-19 patients exhibited decreased expression of HLA-DR and increased expression of CD163, irrespective of the clinical status. Hence, SARS-CoV-2 drives circulating monocytes and macrophages inducing immunoparalysis of the host for the benefit of Covid-19 disease progression.


Sign in / Sign up

Export Citation Format

Share Document