scholarly journals Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens

2020 ◽  
Vol 295 (52) ◽  
pp. 18553-18578
Author(s):  
Julia Gauberg ◽  
Salsabil Abdallah ◽  
Wassim Elkhatib ◽  
Alicia N. Harracksingh ◽  
Thomas Piekut ◽  
...  

The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1–CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage–activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+. Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.

1997 ◽  
Vol 110 (3) ◽  
pp. 313-325 ◽  
Author(s):  
Thomas Voets ◽  
Guy Droogmans ◽  
Bernd Nilius

We used the patch-clamp technique to study the voltage-dependent properties of the swelling-activated Cl− current (ICl,swell) in BC3H1 myoblasts. This Cl− current is outwardly rectifying and exhibits time-dependent inactivation at positive potentials (potential for half-maximal inactivation of +75 mV). Single-channel Cl− currents with similar voltage-dependent characteristics could be measured in outside-out patches pulled from swollen cells. The estimated single-channel slope conductance in the region between +60 and +140 mV was 47 pS. The time course of inactivation was well described by a double exponential function, with a voltage-independent fast time constant (∼60 ms) and a voltage-dependent slow time constant (>200 ms). Recovery from inactivation, which occurred over the physiological voltage range, was also well described by a double exponential function, with a voltage-dependent fast time constant (10–80 ms) and a voltage-dependent slow time constant (>100 ms). The inactivation process was significantly accelerated by reducing the pH, increasing the Mg2+ concentration or reducing the Cl− concentration of the extracellular solution. Replacing extracellular Cl− by other permeant anions shifted the inactivation curve in parallel with their relative permeabilities (SCN− > I− > NO3− > Cl− >> gluconate). A leftward shift of the inactivation curve could also be induced by channel blockers. Additionally, the permeant anion and the channel blockers, but not external pH or Mg2+, modulated the recovery from inactivation. In conclusion, our results show that the voltage-dependent properties of ICl,swell are strongly influenced by external pH , external divalent cations, and by the nature of the permeant anion.


2016 ◽  
Vol 311 (5) ◽  
pp. C808-C819 ◽  
Author(s):  
Akihiro Kamikawa ◽  
Osamu Ichii ◽  
Junpei Sakazaki ◽  
Toru Ishikawa

The Cl− secretion via Ca2+-activated Cl− channel (CaCC) is critical for fluid secretion in exocrine glands like the salivary gland. Also in the mammary gland, it has been hypothesized that CaCC plays an important role in the secretion of Cl− and aqueous phase of milk. However, there has been no evidence for the functional expression of CaCC in native mammary secretory (MS) cells of lactating animals. We therefore assessed membrane current in MS cells that were freshly isolated from lactating mice using whole cell patch-clamp techniques. In MS cells, we detected CaCC current that exhibited the following characteristics: 1) Ca2+-dependent activation at the concentrations of submicromolar range; 2) voltage-dependent activation; 3) slow kinetics for activation and deactivation; 4) outward rectification of the steady-state current; 5) anion permeability in the sequence of I− > NO3− > Br− > Cl− >> glutamate; 6) inhibition by Cl− channel blockers (niflumic acid, DIDS, and CaCCinh-A01). These characteristics of native CaCC current were similar to reported characteristics of heterologously expressed TMEM16A. RT-PCR analyses showed the expression of multiple CaCC channels including TMEM16A, Best1, and Best3 in the mammary glands of lactating mice. Immunohistochemical staining revealed the localization of TMEM16A protein at the apical membrane of the MS cells. Collectively, our data strongly suggest that MS cells functionally express CaCC, which is at least partly constituted by TMEM16A. The CaCC such as TMEM16A at the apical membrane of the MS cells may influence the quantity and/or quality of milk.


1988 ◽  
Vol 255 (4) ◽  
pp. E469-E474
Author(s):  
J. P. Kile ◽  
M. S. Amoss

It has been proposed that gonadotropin-releasing hormone (GnRH) stimulates Ca2+ entry by activation of voltage-independent, receptor-mediated Ca2+ channels in the rat gonadotroph. Little work has been done on the role of calcium in GnRH-induced luteinizing hormone (LH) release in species other than the rat. Therefore, this study was done to compare the effects of agents that alter Ca2+ or Na+ entry on LH release from calf anterior pituitary primary cells in culture. GnRH (100 ng/ml), Ca2+ ionophore A23187 (2.5 microM), and the depolarizing agent ouabain (0.1-10 microM) all produced significant increases (P less than 0.05) in LH release; these effects were significantly reduced when the cells were preincubated with the organic Ca2+ channel blockers nifedipine (1-10 microM) and verapamil (1-10 microM) and with Co2+ (0.01-1 mM). The effect of ouabain was inhibited by tetrodotoxin (TTX; 1-10 nM) as well as by nifedipine at 0.1-10 microM. In contrast to its effect on rat pituitary LH release, TTX significantly inhibited GnRH-stimulated LH release at 1-100 nM. These results suggest that GnRH-induced LH release may employ Ca2+ as a second messenger in bovine gonadotrophs and support recent speculation that GnRH-induced Ca2+ mobilization may in part be voltage dependent.


Author(s):  
Ji Yeon Lee ◽  
Haifeng Zheng ◽  
Kenton M. Sanders ◽  
Sang Don Koh

We characterized the two types of voltage-dependent inward currents in murine antral SMC. The HVA and LVA inward currents were identified when cells were bathed in Ca2+-containing physiological salt solution. We examined whether the LVA inward current was due to: 1) T-type Ca2+ channels, 2) Ca2+-activated Cl- channels, 3) non-selective cation channels (NSCC) or 4) voltage-dependent K+ channels with internal Cs+-rich solution. Replacement of external Ca2+ (2 mM) with equimolar Ba2+ increased the amplitude of the HVA current but blocked the LVA current. Nicardipine blocked the HVA current, and in the presence of nicardipine, T-type Ca2+ blockers failed to block LVA. The Cl- channel antagonist had little effect on LVA. Cation-free external solution completely abolished both HVA and LVA. Addition of Ca2+ in cation-free solution restored only HVA currents. Addition of K+ (5 mM) to cation-free solution induced LVA current that reversed at -20 mV. These data suggest that LVA is not due to T-type Ca2+ channels, Ca2+-activated Cl- channels or NSCC. Antral SMC express A-type K+ currents (KA) and delayed rectifying K+ currents (KV) with dialysis of high K+ (140 mM) solution. When cells were exposed to high K+ external solution with dialysis of Cs+-rich solution in the presence of nicardipine, LVA was evoked and reversed at positive potentials. These HK-induced inward currents were blocked by K+ channel blockers, 4-aminopyridine and TEA. In conclusion, LVA inward currents can be generated by K+ influx via KA and KV channels in murine antral SMC when cells were dialyzed with Cs+-rich solution.


1994 ◽  
Vol 71 (1) ◽  
pp. 1-10 ◽  
Author(s):  
S. A. Helekar ◽  
J. L. Noebels

1. Intracellular current- and voltage-clamp recordings were carried out in CA3 pyramidal neurons from hippocampal slices of adult tg/tg mice and their coisogenic C57BL/6J (+/+) controls with the use of the single-electrode switch-clamp technique. The principal aim of this study was to investigate the mechanisms responsible for the tg gene-linked prolongation (mean 60%) of a giant synaptic response, the potassium-induced paroxysmal depolarizing shift (PDS) at depolarized membrane potentials (Vm -47 to -54 mV) during synchronous network bursting induced by 10 mM potassium ([K+]o). 2. To examine the role of intrinsic voltage-dependent conductances underlying the mutant PDS prolongation, neurons were voltage clamped by the use of microelectrodes filled with 100 mM QX-314 or QX-222 chloride (voltage-gated sodium channel blockers) and 2 M cesium sulphate (potassium channel blocker). The whole-cell currents active during the PDS showed a significantly prolonged duration (mean 34%) at depolarized Vms in tg/tg compared with +/+ cells, indicating that a defect in voltage-dependent conductances is unlikely to completely account for the mutant phenotype. 3. Bath application of 40 microM (DL)-2-aminophosphonovalerate (DL-APV) produced a 30% reduction in PDS duration in both genotypes but failed to significantly alter the tg gene-linked prolongation compared with the wild type. These data indicate that the mutant PDS abnormality does not result from a selective increase of the N-methyl-D-aspartate (NMDA) receptor-mediated excitatory synaptic component. 4. Blockade of gamma-aminobutyric acid-A (GABAA) transmission with picrotoxin (50 microM) or bicuculline (1–5 microM) completely eliminated the difference in PDS duration between the genotypes. Furthermore, although both GABAA receptor antagonists increased the mean PDS duration in +/+ neurons, they did not significantly alter it in tg/tg neurons. These findings are consistent with a reduction in GABAA receptor-mediated synaptic inhibition during bursting in the tg CA3 hippocampal network. 5. To test this hypothesis, bursting CA3 pyramidal neurons were loaded intracellularly with chloride by the use of KCl-filled microelectrodes to examine the effect of reversing the hyperpolarizing chloride-dependent GABAA receptor-mediated inhibitory postsynaptic component of the PDS. Chloride loading prolonged PDS duration in both genotypes, but the increase was greater in +/+ than in tg/tg neurons, indicating that a smaller GABAA inhibitory postsynaptic potential (IPSP) component was reversed in the mutant.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 115 (47) ◽  
pp. 12051-12056 ◽  
Author(s):  
Akil A. Puckerin ◽  
Donald D. Chang ◽  
Zunaira Shuja ◽  
Papiya Choudhury ◽  
Joachim Scholz ◽  
...  

Genetically encoded inhibitors for voltage-dependent Ca2+ (CaV) channels (GECCIs) are useful research tools and potential therapeutics. Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like G proteins that potently inhibit high voltage-activated (HVA) Ca2+ (CaV1/CaV2 family) channels, but their nonselectivity limits their potential applications. We hypothesized that nonselectivity of RGK inhibition derives from their binding to auxiliary CaVβ-subunits. To investigate latent CaVβ-independent components of inhibition, we coexpressed each RGK individually with CaV1 (CaV1.2/CaV1.3) or CaV2 (CaV2.1/CaV2.2) channels reconstituted in HEK293 cells with either wild-type (WT) β2a or a mutant version (β2a,TM) that does not bind RGKs. All four RGKs strongly inhibited CaV1/CaV2 channels reconstituted with WT β2a. By contrast, when channels were reconstituted with β2a,TM, Rem inhibited only CaV1.2, Rad selectively inhibited CaV1.2 and CaV2.2, while Gem and Rem2 were ineffective. We generated mutant RGKs (Rem[R200A/L227A] and Rad[R208A/L235A]) unable to bind WT CaVβ, as confirmed by fluorescence resonance energy transfer. Rem[R200A/L227A] selectively blocked reconstituted CaV1.2 while Rad[R208A/L235A] inhibited CaV1.2/CaV2.2 but not CaV1.3/CaV2.1. Rem[R200A/L227A] and Rad[R208A/L235A] both suppressed endogenous CaV1.2 channels in ventricular cardiomyocytes and selectively blocked 25 and 62%, respectively, of HVA currents in somatosensory neurons of the dorsal root ganglion, corresponding to their distinctive selectivity for CaV1.2 and CaV1.2/CaV2.2 channels. Thus, we have exploited latent β-binding–independent Rem and Rad inhibition of specific CaV1/CaV2 channels to develop selective GECCIs with properties unmatched by current small-molecule CaV channel blockers.


1986 ◽  
Vol 126 (1) ◽  
pp. 119-132
Author(s):  
M. J. O'DONNELL

Depolarization of Rhodnius oocytes evokes action potentials (APs) whose rising phase is calcium-dependent. The ionic basis for the repolarizing (i.e. falling) phase of the AP was examined. Addition of potassium channel blockers (tetraethylammonium, tetrabutylammonium, 4-aminopyridine, atropine) to the bathing saline increased the duration and overshoot of APs. Intracellular injection of tetraethyl ammonium had similar effects. These results suggest that a voltage-dependent potassium conductance normally contributes to repolarization. Repolarization does not require a chloride influx, because substitution of impermeant anions for chloride did not increase AP duration. AP duration and overshoot actually decreased progressively when chloride levels were reduced. Current/voltage curves show inward and outward rectification, properties often associated with potassium conductances. Outward rectification was largely blocked by external tetraethylammonium. Possible functions of the rectifying properties of the oocyte membrane are discussed.


2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


2002 ◽  
Vol 120 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Lai-Hua Xie ◽  
Scott A. John ◽  
James N. Weiss

Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg2+. Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers.


1994 ◽  
Vol 267 (2) ◽  
pp. L106-L112 ◽  
Author(s):  
T. L. Croxton ◽  
C. Fleming ◽  
C. A. Hirshman

Voltage-dependent and receptor-operated Ca2+ entry mechanisms have been demonstrated in airway smooth muscle, but their relative importance for maintenance of contraction is unknown. Blockade of voltage-dependent Ca2+ channels (VDC) has produced inconsistent relaxation. We postulated regional variations in Ca2+ handling by airway smooth muscle cells and compared the efficacy of dihydropyridine VDC blockers in tracheas and bronchi. Porcine tracheal smooth muscle strips and bronchial rings were mounted in tissue baths filled with physiological solutions and isometric tension was measured. Tissues were precontracted with carbachol or KCl, and relaxation dose-response curves to nifedipine, Mn2+, or Cd2+ were obtained. Relaxation responses to nifedipine were significantly different in carbachol-contracted tracheas and bronchi. Whereas carbachol-contracted tracheal muscle completely relaxed with 10(-6) M nifedipine, bronchial smooth muscle relaxed < 50%. In contrast, KCl-contracted bronchial muscle was completely relaxed by nifedipine. The nonspecific Ca2+ channel blockers Mn2+ and Cd2+ produced similar relaxation responses in each tissue. Thus VDC are the predominant mechanism for Ca2+ entry in porcine tracheal smooth muscle, but a dihydropyridine-insensitive pathway is functionally important in carbachol-contracted porcine bronchi. Regional variation may account for apparent inconsistencies between previous studies.


Sign in / Sign up

Export Citation Format

Share Document