Olive mill products and environmental impact of olive oil production.

Olives ◽  
2009 ◽  
pp. 295-302
Author(s):  
I. Therios
2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Antonis A. Zorpas ◽  
Vassilis J. Inglezakis

The annual olive oil production in Cyprus is in the range of 2700–3100 t y−1, resulting in the generation of significant amount of waste. The cocomposting of the olive oil solid residue (OOSR) and the treated wastewaters (with Fenton) from the olive oil production process with the application of reed beds has been studied as an integrated method for the treatment of wastewater containing high organic and toxic pollutants under warm climate conditions. The experimental results indicated that the olive mill wastewater (OMW) is detoxified at the end of the Fenton process. Specifically, COD is reduced up to 65% (minimum 54.32%) by the application of Fenton and another 10–28% by the application of red beds as a third stage. The final cocomposted material of OOSR with the treated olive mile wastewater (TOMW) presents optimum characteristics and is suitable for agricultural purpose.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 671
Author(s):  
Adnan Khdair ◽  
Ghaida Abu-Rumman

Cultivation of olive trees and olive oil production have been considered as a legacy for the Mediterranean region. This custom represents a very important benefit for many nations in terms of wealth and health. However, huge amounts of by-products and waste are generated during olive oil production. This represents a serious environmental impact on land and water bodies if not properly handled. Olive oil extraction generates two waste streams, a solid waste called pomace and olive mill wastewater (OMWW), which has been considered as highly pollutant and phytotoxic waste. These wastes have high disposal costs and predominantly generated from small-scale enterprises that have limited financial resources to treat them properly before discharge to the environment. Besides being a serious environmental problem, OMWW has potential economic value that remains to be utilized such as: fertilizers, valuable antioxidants agents and fatty acids needed in human diet. Also, Olive pomace is a valuable renewable energy source with an energy density of 23 MJ/kg and has become an inexpensive alternative for fossil fuels. Aiming at adding value to the olive production sectors and potential valorization options for byproducts in the MENA region, international practices applied in olive mills wastes management’s and treatment methods used in major oil producing countries are presented.


Author(s):  
Ulaş Baysan ◽  
Mehmet Koç ◽  
Figen Ertekin

With starting healthy consumption awareness in people throughout world, olive oil demand has increased and it is expected that this demand will increase day by day. As a result of increase in the demand for olive oil, the rise in amount of olive pomace that emerges after olive oil production is evident. The differences in olive oil production methods result in varied wastes in terms of property and quantity. Olive mill waste water and olive pomace possessing 35-40% moisture come out in 3-phase system while only olive pomace possessing 60-70% moisture comes out in 2-phase system. The quantity and pollution degree of waste water coming out in 3-phase system are considerably high from 2-phase system. Recycling of 2-phase olive pomace containing also olive mill waste water, which is highly harmful for environment and is generally discharged to nature without any treatment, is considerably important by processing. This review gives information about the necessity of drying of olive pomace and related studies with this subject.


2020 ◽  
Vol 68 (52) ◽  
pp. 15428-15439
Author(s):  
Alessandra Ricelli ◽  
Fabio Gionfra ◽  
Zulema Percario ◽  
Martina De Angelis ◽  
Ludovica Primitivo ◽  
...  

2013 ◽  
Vol 14 (2) ◽  
pp. 118-124 ◽  

Olive oil mill solid residue (OMSR) is the solid waste generated during olive oil production process in three-phase olive mills. It consists of the remaining pulp of olive processing after the extraction of oil, as well as the cracked seeds of the olive fruits, containing thus mainly lignocellulose and residual oil. The commonly used practice for OMSR management is combustion, after having extracted the residual oil by secondary extraction using organic solvents. Other proposed ways of OMSR management are their exploitation as substrate for edible fungi production and compost, and as feedstock for biofuels generation such as methane and bioethanol. In the latter case, the complex carbohydrates (cellulose and hemicellulose) of the lignocellulose of OMSR have to be degraded towards their simple sugars and further fermented via microorganisms. The purpose of the present study was to investigate the effect of thermochemical pre-treatment of OMSR, on the final ethanol yield from the yeast Pachysolen tannophilus. Nine different types of OMSR-based substrates were tested i.e. raw OMSR, hydrolysates generated from pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v), and pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v) whole biomass. It was shown that in all cases pretreatment enhanced the consumption of carbohydrates as well as ethanol final yields.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 800
Author(s):  
Anna Maria Posadino ◽  
Annalisa Cossu ◽  
Roberta Giordo ◽  
Amalia Piscopo ◽  
Wael M Abdel-Rahman ◽  
...  

This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid–liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.


Author(s):  
Alif Chebbi ◽  
Massimiliano Tazzari ◽  
Cristiana Rizzi ◽  
Franco Hernan Gomez Tovar ◽  
Sara Villa ◽  
...  

Abstract Within the circular economy framework, our study aims to assess the rhamnolipid production from winery and olive oil residues as low-cost carbon sources by nonpathogenic strains. After evaluating various agricultural residues from those two sectors, Burkholderia thailandensis E264 was found to use the raw soluble fraction of nonfermented (white) grape marcs (NF), as the sole carbon and energy source, and simultaneously, reducing the surface tension to around 35 mN/m. Interestingly, this strain showed a rhamnolipid production up to 1070 mg/L (13.37 mg/g of NF), with a higher purity, on those grape marcs, predominately Rha-Rha C14-C14, in MSM medium. On olive oil residues, the rhamnolipid yield of using olive mill pomace (OMP) at 2% (w/v) was around 300 mg/L (15 mg/g of OMP) with a similar CMC of 500 mg/L. To the best of our knowledge, our study indicated for the first time that a nonpathogenic bacterium is able to produce long-chain rhamnolipids in MSM medium supplemented with winery residues, as sole carbon and energy source. Key points • Winery and olive oil residues are used for producing long-chain rhamnolipids (RLs). • Both higher RL yields and purity were obtained on nonfermented grape marcs as substrates. • Long-chain RLs revealed stabilities over a wide range of pH, temperatures, and salinities


Sign in / Sign up

Export Citation Format

Share Document