Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla-La Mancha, Spain

2005 ◽  
Vol 79 (2) ◽  
pp. 113-118 ◽  
Author(s):  
P. Acevedo ◽  
J. Vicente ◽  
V. Alzaga ◽  
C. Gortazar

AbstractThe excretion of bronchopulmonary nematode infective larvae was evaluated in 160 faecal samples of Spanish ibex (Capra pyrenaica hispanica) collected from 13 populations in Castilla-La Mancha, south-central Spain in September 2003. Intensities and prevalences were compared with pasture availability, abundances of wild and domestic ungulates at both levels, i.e. for populations and for faeces in a two-step procedure. Protostrongylid larvae showed similar infection rates (mean intensity: 1.56±0.12, n=94; mean prevalence: 25.62±6.86%, n=160) to Dictyocaulus spp. (mean intensity: 1.03±0.11, n=48; mean prevalence: 30.00±7.11%, n=160). At the population level, positive correlations were found between the prevalences of both bronchopulmonary taxa. The prevalence in both groups, but not intensity, also correlated positively with Spanish ibex abundance indexes both for the populations and individual faeces. These findings suggest that: (i) parasite spreading across Spanish ibex populations in Castilla-La Mancha could respond to host density-dependent processes; and (ii) these populations may have similar exposition and/or susceptibility to both bronchopulmonary taxa resulting in similar host–parasite patterns, despite their different life cycles. Bronchopulmonary outputs in the Spanish ibex from Castilla-La Mancha seems not to represent a health risk for this endemic wild ungulate but may be useful in any health surveillance scheme for the increasing populations of Spanish ibex.

1999 ◽  
Vol 77 (12) ◽  
pp. 1967-1974 ◽  
Author(s):  
David C Heins ◽  
Scarlet S Singer ◽  
John A Baker

We investigated the relationship between reproduction in the threespine stickleback (Gasterosteus aculeatus) and parasitism by plerocercoids of the cestode Schistocephalus solidus in Walby Lake, Alaska, by quantifying stickleback reproduction and parasite infection using 1655 fish from four samples collected in 1990-1996. Stickleback in Walby Lake largely spawned during May and June as 2-year-olds in the second spring-summer after hatching, as was the case with other stickleback populations we studied in south-central Alaska. Contrary to an earlier hypothesis that S. solidus has been selected to delay its deleterious effects on threespine stickleback, i.e., limit its infection levels, until after the stickleback have reproduced, substantial levels of parasitic infection co-occurred with the stickleback reproductive period. Chi-squared analyses of individual samples suggested that in May, infected females were as capable of producing clutches of eggs as uninfected females but in June, S. solidus inhibited clutch production. An overall analysis, however, failed to support the hypothesis that the effect of S. solidus on clutch production differed between early and late periods of the spawning season. We concluded that S. solidus inhibits the ability of female stickleback in Walby Lake to produce a clutch, and that there was no differential effect on clutch production with season. Nonetheless, 77% of all infected females produced clutches. These results contrast with those of one study in which it was found only 9% of infected females became gravid (ripe) and another report that 23% of infected females were able to mature. We offer hypotheses for the co-occurrence of stickleback reproduction and substantial parasitism at the population level and for the ability of a large proportion of infected females to produce clutches. Our results suggest that the host-parasite relationship is more complex than was previously realized.


2011 ◽  
Vol 57 (3) ◽  
pp. 390-405 ◽  
Author(s):  
J. Martinez ◽  
S. Merino

Abstract The effect that climatic changes can exert on parasitic interactions represents a multifactor problem whose results are difficult to predict. The actual impact of changes will depend on their magnitude and the physiological tolerance of affected organisms. When the change is considered extreme (i.e. unusual weather events that are at the extremes of the historical distribution for a given area), the probability of an alteration in an organisms’ homeostasis increases dramatically. However, factors determining the altered dynamics of host-parasite interactions due to an extreme change are the same as those acting in response to changes of lower magnitude. Only a deep knowledge of these factors will help to produce more accurate predictive models for the effects of extreme changes on parasitic interactions. Extreme environmental conditions may affect pathogens directly when they include free-living stages in their life-cycles and indirectly through reduced resource availability for hosts and thus reduced ability to produce efficient anti-parasite defenses, or by effects on host density affecting transmission dynamics of diseases or the frequency of intraspecific contact. What are the consequences for host-parasite interactions? Here we summarize the present knowledge on three principal factors in determining host-parasite associations; biodiversity, population density and immunocompetence. In addition, we analyzed examples of the effects of environmental alteration of anthropogenic origin on parasitic systems because the effects are analogous to that exerted by an extreme climatic change.


2019 ◽  
Vol 59 (5) ◽  
pp. 1243-1252 ◽  
Author(s):  
Matthew Malishev ◽  
David J Civitello

Abstract The consequences of parasite infection for individual hosts depend on key features of host–parasite ecology underpinning parasite growth and immune defense, such as age, sex, resource supply, and environmental stressors. Scaling these features and their underlying mechanisms from the individual host is challenging but necessary, as they shape parasite transmission at the population level. Translating individual-level mechanisms across scales could inherently improve the way we think about feedbacks among parasitism, the mechanisms driving transmission, and the consequences of human impact and disease control efforts. Here, we use individual-based models (IBMs) based on general metabolic theory, Dynamic Energy Budget (DEB) theory, to scale explicit life-history features of individual hosts, such as growth, reproduction, parasite production, and death, to parasite transmission at the population level over a range of resource supplies focusing on the major human parasite, Schistosoma mansoni, and its intermediate host snail, Biomphalaria glabrata. At the individual level, infected hosts produce fewer parasites at lower resources as competition increases. At the population level, our DEB–IBM predicts brief, but intense parasite peaks early during the host growth season when resources are abundant and infected hosts are few. The timing of these peaks challenges the status quo that high densities of infected hosts produce the highest parasite densities. As expected, high resource supply boosts parasite output, but parasite output also peaks at modest to high host background mortality rates, which parallels overcompensation in stage-structured models. Our combined results reveal the crucial role of individual-level physiology in identifying how environmental conditions, time of the year, and key feedbacks within host–parasite ecology interact to define periods of elevated risk. The testable forecasts from this physiologically-explicit epidemiological model can inform disease management to reduce human risk of schistosome infection.


2004 ◽  
Vol 2 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Lucélia Nobre Carvalho ◽  
Rafael Arruda ◽  
Kleber Del-Claro

In the tropics, studies on the ecology of host-parasite interactions are incipient and generally related to taxonomic aspects. The main objective of the present work was to analyze ecological aspects and identify the metazoan fauna of ectoparasites that infest the piranha, Pygocentrus nattereri. In May 2002, field samples were collected in the rio Araguaia basin, State of Goiás (Brazil). A total of 252 individuals of P. nattereri were caught with fishhooks and 32.14% were infested with ectoparasite crustaceans. The recorded ectoparasites were branchiurans, Argulus sp. and Dolops carvalhoi and the isopods Braga patagonica, Anphira branchialis and Asotana sp. The prevalence and mean intensity of branchiurans (16.6% and 1.5, respectively) and isopods (15.5% and 1.0, respectively) were similar. Isopods were observed in the gills of the host; branchiurans were more frequent where the skin was thinner, and facilitated attachment and feeding. The ventral area, the base of the pectoral fin and the gular area were the most infested areas. The correlations between the standard length of the host and the variables intensity and prevalence of crustaceans parasitism, were significant only for branchiurans (rs = 0.2397, p = 0.0001; chi2 = 7.97; C = 0.19). These results suggest that both feeding sites and body size probably play an important role in the distribution and abundance of ectoparasites.


Parasitology ◽  
2020 ◽  
pp. 1-15
Author(s):  
Dana M. Hawley ◽  
Amanda K. Gibson ◽  
Andrea K. Townsend ◽  
Meggan E. Craft ◽  
Jessica F. Stephenson

Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204467 ◽  
Author(s):  
Alexander O. Frolov ◽  
Marina N. Malysheva ◽  
Anna I. Ganyukova ◽  
Vyacheslav Yurchenko ◽  
Alexei Y. Kostygov

2004 ◽  
Vol 78 (6) ◽  
pp. 1214-1216 ◽  
Author(s):  
Michael G. Bassett ◽  
Leonid E. Popov ◽  
Lars E. Holmer

A unique specimen of the micromorphic fossil lingulate (organophosphatic-shelled) brachiopod Linnarssonia constans Koneva, 1983 from the late Lower Cambrian Shabakty Group of the Malyi Karatau Range in Kazakhstan, Central Asia, preserves evidence of infestation within the mantle cavity by a vermiform animal, leading to the growth of an internal tubular protuberance (Fig. 1) resulting from symbiosis some 520 million years ago. Examples of symbiotic relationships between metazoans in the early Paleozoic are sparse (Conway Morris, 1981, 1990; Conway Morris and Crompton, 1982). Descriptions of a variety of galls and tumorlike swellings in some trilobites extend records back to the Middle Cambrian (Conway Morris, 1990), but their interpretation as traces of endoparasitic activity remains somewhat speculative. Thus galllike swellings on the stems of Silurian echinoderms (Franzen, 1974), vermiform tubes on some early Ordovician dendroid graptolites (Conway Morris, 1990), and various tubes and blisters on graptoloid graptolites (see Bates and Loydell, 2000 for review) are among the hitherto earliest known convincing records of host-parasite relationships within metazoans. Our example reported here predates the oldest of these previous records by approximately 35 to 40 million years, and demonstrates that symbiosis involving complex adaptations (e.g., larval settlement on or within living tissue and exploitation of feeding systems of the host) and codependent life cycles were already established soon after the ‘explosive’ evolutionary radiation of marine metazoans in the early Cambrian. The fossil evidence of infestation on lophophorates is especially sparse, at best. The oldest hitherto undoubted records are both from brachiopods of Devonian age, in the Lower Devonian Emsian Stage of eastern Australia and in the Middle Devonian Givetian Stage of the Holy Cross Mountains in Poland, respectively.


Sign in / Sign up

Export Citation Format

Share Document