Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents

2005 ◽  
Vol 3 (2) ◽  
pp. 90-100 ◽  
Author(s):  
Michael Wink ◽  
A. Wilhelm Alfermann ◽  
Rochus Franke ◽  
Bernhard Wetterauer ◽  
Melanie Distl ◽  
...  

Due to their complex structure with several chiral centres important anticancer agents are still extracted from plants and not synthesized chemically on a commercial scale. Sustainable bioproduction of the compounds of interest may be achieved by plant in vitro cultures. Undifferentiated callus and suspension cultures, which can be cultivated in large bioreactors easily, very often fail to accumulate the compounds of interest, whereas shoot and root cultures as well hairy roots normally produce the same compounds as in the appropriate organs. The production of anticancer compounds, such as the alkaloids vinblastine, vincristine, paclitaxel (Taxol®), camptothecin, or the lignan podophyllotoxin, by plant in vitro cultures is reviewed. Taxanes can be produced in bioreactors using cell suspensions of various Taxus species with good yields; presently paclitaxel is produced on a commercial scale by Phyton Biotech (Germany). Camptothecin has low yields in suspension cultures of Camptotheca acuminata or Nothapodytes foetida (0.0003–0.01%), but a good production (0.1–0.3% dry wt) in root and hairy root cultures of Ophiorrhiza pumila, O. mungos and C. acuminata. Podophyllotoxin can be produced in cell suspension and root as well as hairy root cultures of Podophyllum and various Linum species up to 130 mg/l (Linum album cell suspensions); its derivative 6-methoxypodophyllotoxin is accumulated in hairy roots of L. persicum up to about 500 mg/l. The in vitro production of dimeric indole alkaloids in Catharanthus roseus has failed so far both in undifferentiated and differentiated in vitro cultures. In cases where in vitro cultures show good yields, they can be employed in biotechnology for the sustainable production of valuable products.

2012 ◽  
Author(s):  
◽  
Leeann Naicker

Many secondary metabolites that have been extracted from medicinal plants have been used as source of clinical drugs. However, the concentration of the active metabolites in plants is generally low. An attractive alternative for producing these important secondary metabolites is via plant tissue culture technology. More particularly, the genetic transformation of a plant tissue by Agrobaterium rhizogenes has been employed for producing high yields of secondary metabolites. In a previous study, three structurally similar anthraquinones: 9,10-Anthracenedione, 1-Hydroxy-4-methylanthraquinone and 5,8-Dimethoxy-2,3,10,10a-tetrahydro-1H,4aH-phenanthrene-4,9-dione, and one steroid; Androst-5-ene-3, 17, 19-triol were isolated from the root extracts of C. triloba. The anthraquinones have shown to exhibit the anticancer mechanism which involves the inhibition of the activity of the human topoisomerase II enzyme that transforms supercoiled DNA to linear DNA. However, these anthraquinones were found in very low concentrations. Therefore, in this study we used plant cell and tissue culture systems (cell suspension, shoot and hairy root cultures) of C. triloba to increase the production of anthraquinones. Since the establishment of C. triloba in vitro plant systems required a source sterile explants, a protocol that involved the use of NaCIO was optimized for the sterilization and subsequent germination of C. triloba seeds which were micro-propagated into shoot cultures. These cultures provided a source explants for the induction of callus and hairy root cultures. The biomass of these plant cell and tissue cultures were subsequently bulked up for the extraction for anthraquinones and the yields were compared followed by fractionation and identification of the major compounds. The bioactivity of the fractions was evaluated by testing their cytotoxicity on cancer cells and anti-topoisomerase activity. The sterilization protocol that provided sterile seeds was found to be a solution of 30% NaCIO at an exposure time of 10 minutes. From the sterilized seeds shoot cultures were established on MS medium. The leaf explants of the shoot cultures were then used to induce callus cultures which subsequently were transferred to liquid medium whereby the total biomass of suspension cultures increased from 4 g to 134.18 g (wet weight). Also hairy roots cultures were established from stem explants with a low cell density inoculum of A. rhizogenes at a transformation efficiency of 73%. The growth of these hairy roots was slow in hormone free medium. This was overcomed with the use NAA and IAA which increased the xvii biomass from 1.03 g in the control culture (without hormone) to 23.91 g and 46.13 g respectively. An evaluation of the anthraquinones in the field root and hairy root, cell suspension and shoot culture extracts was carried out by using their Thin Layer Chromatography profiles and the High Performance Liquid Chromatography profiles as well as the standards, 9,10-Anthracenedione and 1-Hydroxy-4-methylanthaquinone. TLC analysis showed that the RF values of the fractions CT01 and CT02 matched the RF values of anthraquinones standards while HPLC analysis revealed that hairy root cultures supplemented with IAA (125.03 μg.mg-1) or NAA (98.25 μg. mg-1) produced a higher concentration of anthraquinones than the control culture (without hormone) (13.33 μg.mg-1), the field roots (33.51 μg. mg-1) and the shoot (3.23 μg.mg-1) and cell suspension cultures (13.17 μg.mg-1). Due to co-elution of the compounds in HPLC analysis, six fractions were isolated by Preparative Thin Layer Chromatography from the hairy root extract (obtained from the culture supplemented with NAA) and were coded as CT01, CT02, CT03, CT04, CT05 and CT06. The compounds in these fractions were identified by Electron Ionization-Liquid chromatography-Mass Spectroscopy and it was found that the hairy roots produced one acridone derivative; 5-Methoxy-2-nitro-10H-acridin-9-one, one naphthoquinone derivative; 2H-Naphto[2,3-b]pyran-5,10-dione,3,4-dihydro-2,2-dimethyl- and seven anthracenedione derivatives. These were: i) 5,8-Dimethoxy-2,3,10,10a-tetrahydro-1H,4aH-phenanthrene-4,9-dione, ii) 9,10-Anthracenedione, 2-methyl-, iii) 1-Hydroxy-4-methylanthraquinone, iv) 9,10-Anthracenedione, 2-ethyl-, v) 1,5-Diaminoanthraquinone, vi) Phenanthrene, 3,6-dimethoxy-9-methyl-, vii) 9,10-Anthracenedione, 1,4-dimethyl-. Fractions CT01 (5,8-Dimethoxy-2,3,10,10a-tetrahydro-1H,4aH-phenanthrene-4,9-dione, 9,10-Anthracenedione, 2-methyl- and 1-Hydroxy-4-methylanthraquinone) and CT02 (9,10- Anthracenedione, 2-ethyl-) were cytotoxic to the DU-145 cancer cell line at concentrations of 125 μg.mg-1 to 1000 μg.mg-1. These fractions also showed anti-topoisomerase activity as they inhibited the conversion of supercoiled DNA into linear DNA. In conclusion this is the first study that describes the transformation of C. triloba by A. rhizogenes mediated transformation and compares the production of anthraquinones in C. triloba hairy roots to the field roots, shoot and cell suspension cultures. This study has xviii indicated that hairy root cultures is a high-yielding production system for anthraquinones (5,8-Dimethoxy-2,3,10,10a-tetrahydro-1H,4aH-phenanthrene-4,9-dione, 1-Hydroxy-4-methylanthraquinone, 9,10-Anthracenedione, 2-methyl- and 9,10- Anthracenedione, 2-ethyl-) which could have the potential to be used in cancer therapy. In addition the discovery of C. triloba hairy roots having the biosynthetic capacity to synthesize five valuable anthraquinone derivatives that are not found the field roots has also been revealed.


2021 ◽  
Vol 43 (3) ◽  
Author(s):  
Abdulwadood S. M. Alsoufi ◽  
Klaudia Staśkiewicz ◽  
Michał Markowski

AbstractHairy root cultures are an efficient tool for the biotechnological production of plant metabolites and a convenient experimental model for analyzing the effect of various compounds on plant metabolism. In contrast to many other types of in vitro plant cultures, hairy roots do not require an external supply of phytohormones to the medium. Consequently, plant growth regulators such as auxins and cytokinins are rarely used as elicitors in hairy root in vitro cultures; however, they can strongly influence plant defense responses. The aim of this study was to investigate the influence of two auxins: natural indole-3-acetic acid (IAA) and synthetic 1-naphthaleneacetic acid (NAA), as well as two cytokinins: natural kinetin and synthetic 6-benzylaminopurine (BAP) at a concentration of 0.75 mg/L on the metabolism of sterols and triterpenoids in Calendula officinalis hairy roots. Auxins prevented the accumulation of triterpenoid saponins (oleanolic acid glycosides), while cytokinin BAP increased their accumulation by 17% and their release into the culture medium by a factor of 10. Other cytokinins and kinetins increased the sterol levels by 17%, the level of stigmasterol by 15%, and the level of isofucosterol by 7 times.


2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001
Author(s):  
Yeon Bok Kim ◽  
Darwin W. Reed ◽  
Patrick S. Covello

Silene vulgaris (Moench) Garcke (Caryophyllaceae) is widely distributed in North America and contains bioactive oleanane-type saponins. In order to investigate in vitro production of triterpenoid saponins, hairy root cultures of S. vulgaris were established by infecting leaf explants with five strains of Agrobacterium rhizogenes (LBA9402, R1000, A4, 13333, and 15834). The A. rhizogenes strain LBA9402 had an infection of 100% frequency and induced the most hairy roots per plant. Methyl jasmonate (MeJA)-induced changes in triterpenoid saponins in S. vulgaris hairy roots were analyzed. Accumulation of segetalic acid and gypsogenic acid after MeJA treatment was 5-and 2-fold higher, respectively, than that of control root. We suggest that hairy root cultures of S. vulgaris could be an important alternative approach to the production of saponins.


2014 ◽  
Vol 70 (4) ◽  
pp. 261-265 ◽  
Author(s):  
Agnieszka Pietrosiuk ◽  
Mirosława Furmanowa

Six groups of untransformed and hairy root cultures of <em>Catharunthus roseus</em> (L.) G. Don were established. <em>Agrobacterium rhizogenes</em> strains: ATCC 15834, LBA 9403, and TR 105 were used for infection of the 3-week old rooted plantlets of <em>C. roseus</em>. The highest contents of examined indole alkaloids were found in: roots of intact plants - yohimbine and serpentine; in hairy roots - catharanthine. Vinblastine and ajmalicine were detected in untransformed roots of plants regenerated in vitro, and transferred to the soil for 5 months.


2008 ◽  
Vol 63 (9-10) ◽  
pp. 691-698 ◽  
Author(s):  
Siriwan Phongprueksapattana ◽  
Waraporn Putalun ◽  
Niwat Keawpradub ◽  
Juraithip Wungsintaweekul

Hairy root cultures of Mitragyna speciosa were established by infection of Agrobacterium rhizogenes ATCC 15834 and maintained in McCown woody plant medium (WPM) supplemented with 0.5 mg/l naphthaleneacetic acid. The hairy roots were identified for the rooting genes loci of rolA and rolB by polymerase chain reaction. For studying the secondary metabolite production, the n-hexane extract of the hairy roots was prepared and the compounds were isolated by silica gel column chromatography, affording triterpenoids (ursolic acid and oleanolic acid) and phytosterols (β-sitosterol and stigmasterol). The shoots from the hairy root cultures were regenerated and differentiated to the plantlets. For micropropagation, shoot multiplication was successfully induced from the axillary buds of the regenerated plantlets in WPM supplemented with 0.1 mg/l thidiazuron. The mitragynine contents of 5-monthold regenerated plants and in vitro plantlets (germinated from seeds) were determined using the TLC-densitometric method. The regenerated plants contained (14.25 ± 0.25) mg/g dry wt mitragynine, whereas the in vitro plantlets contained (4.45 ± 0.09) mg/g dry wt.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
R Bertóti ◽  
Á Alberti ◽  
A Böszörményi ◽  
R Könye ◽  
T Horváth ◽  
...  

2020 ◽  
Vol 71 (22) ◽  
pp. 6861-6864
Author(s):  
María A Pedreño ◽  
Lorena Almagro

This article comments on: Barba-Espín G, Chen S-T, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. 2020. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. Journal of Experimental Botany 71, 7030–7045.


Agrobacterium rhizogenes induces hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection, when cultured in hormone free medium, show high growth rate and genetic stability. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Several elicitation methods can be used to further enhance the production and accumulation of secondary metabolites. Thus, hairy root culture offer promise for high production and productivity of valuable secondary metabolites in many plants. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for pharmaceutical industry. Hairy root cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites, and for phytoremediation due to their abundant neoplastic root proliferation property. Various applications of hairy root cultures and potential problems associated with them are discussed in this chapter.


2020 ◽  
Vol 48 (2) ◽  
pp. 839-848
Author(s):  
Shuang ZHAO ◽  
Hong TANG

Valtrate is a pharmacologically active epoxyiridoid ester found in the roots and rhizomes of Valeriana jatamansi Jones. The plant produces only small amounts of this metabolite naturally, and so induction of hairy roots as well as elicitation can be useful to increase its commercial production. In this study, strain R1601 of Agrobacterium rhizogenes was used to induce hairy roots in V. jatamansi, and stable hairy root cultures of V. jatamansi were established successfully. The influence of three exogenous elicitors including methyl jasmonate (MJ), jasmonic acid (JA) and salicylic acid (SA) on valtrate production in the hairy root cultures of V. jatamansi was also investigated, and the 25-day-old hairy root cultures were treated with different concentrations of the elicitors at exposure time of 7 days. This present study showed that MJ (100 mg/L) highly promoted valtrate production at 7 days after elicitation, to a level of 3.63 times higher than that of non-elicited control. SA did not significantly increase the production of valtrate. This is the first-time study to assess the elicitation of hairy root cultures to promote valtrate biosynthesis in V. jatamansi and the resulting experiments demonstrated that MJ was indeed a potent inducer of valtrate biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document