Interstate Air Pollution Study—St. Louis Area Air Pollutant Emissions Related to Actual Land Use

1967 ◽  
Vol 17 (4) ◽  
pp. 215-219
Author(s):  
Francis L. Bunyard ◽  
James D. Williams
2013 ◽  
Vol 56 (02) ◽  
pp. 31-38 ◽  
Author(s):  
Jason H. Curran ◽  
Helen D. Ward ◽  
Mona Shum ◽  
Hugh W. Davies

Recent studies suggest that exposure to both traffic-related air pollution (TrAP) and to road traffic noise (RTN) are independent risk factors for cardiovascular disease (CVD). While the exact pathophysiologic mechanisms are not known, plausible biological models exist for both associations. This paper describes interventions and mitigating measures aimed at reducing both air and noise pollution emitted from traffic. Nine types of interventions are examined within the four strategic themes of (i) land-use planning and transportation management, (ii) reduction of vehicle emissions, (iii) modification of existing structures, and (iv) behavioral change. Not all interventions result in concomitant reductions of air and noise pollutant exposures. Most interventions that rely on a scientific basis to reduce CVD are directed at reducing TrAP. Interventions identified with the greatest potential benefits focus on the pollutant source, such as reductions in traffic volume and air pollutant emissions, and are more easily realized, and likely cheaper, if they are considered in the land-use planning stages with less reliance on behavioral changes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nico Kuehnel ◽  
Dominik Ziemke ◽  
Rolf Moeckel

Road traffic is a common source of negative environmental externalities such as noise and air pollution. While existing transport models are capable of accurately representing environmental stressors of road traffic, this is less true for integrated land-use/transport models. So-called land-use-transport-environment models aim to integrate environmental impacts. However, the environmental implications are often analyzed as an output of the model only, even though research suggests that the environment itself can have an impact on land use. The few existing models that actually introduce a feedback between land-use and environment fall back on aggregated zonal values. This paper presents a proof of concept for an integrated, microscopic and agent-based approach for a feedback loop between transport-related noise emissions and land-use. The results show that the microscopic link between the submodels is operational and fine-grained analysis by different types of agents is possible. It is shown that high-income households react differently to noise exposure when compared low-income households. The presented approach opens new possibilities for analyzing and understanding noise abatement policies as well as issues of environmental equity. The methodology can be transferred to include air pollutant emissions in the future.


2018 ◽  
Vol 1 (6) ◽  
pp. 247-257
Author(s):  
Bang Quoc Ho ◽  
Tam Thoai Nguyen ◽  
Khue Hoang Ngoc Vu

Can Tho City is one the 5th largest city in Vietnam, with hight rate of economic growth and densely populated with 1,251,809 people, butsling traffic activities with 566,593 motobikes and 15,105 cars and hundreds of factories. The air in Can Tho city is polluted by dust and ozone. However, Can Tho city currently does not have a study on the simulation air pollution spread, therefore we do not have an overview on the status of air pollution in order to do not have solutions to limit the increase of pollution status of the city. The purpose of this study is to collect air pollutant emissions from other study. After that, TAPOM model is used to simulate the effects of ozone on the surrounding areas and study the ozone regime in Cantho city. The study results showed that the highest ozone concentration for an hour everage is 196 μg/m3. Compare with national technical regulation about ambient air QCVN 5:2013/BTNMT, ozone concentration is approximately at the allowable limit. The study of ozone regime had identified that VOC sensitive areas are Ninh Kieu district and a part in the south of Binh Thuy district, and NOx sensitive areas are the rested areas of Cantho city. The main cause contributing to increased VOC emission in the central area of the city is motorcycles, NOx emissions in the remaining areas of Cantho city are from the rice production factories. Proposals to protect the air quality in Cantho city are suggested.


2017 ◽  
Vol 17 (14) ◽  
pp. 9223-9236 ◽  
Author(s):  
Wolfgang Knorr ◽  
Frank Dentener ◽  
Jean-François Lamarque ◽  
Leiwen Jiang ◽  
Almut Arneth

Abstract. Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.


1988 ◽  
Vol 6 (6) ◽  
pp. 447-464
Author(s):  
Jan Vernon

Over the last decade, environmental concerns have played an increasing role in energy decision making, from siting of new energy facilities to national policy changes, such as Sweden's decision to phase out nuclear power. Concern about atmospheric pollution from fossil fuel combustion, reflected in increasingly strict emission limits, has imposed additional costs and technical demands on coal-fired plants. Estimates from the Federal Republic of Germany, the USA and the OECD indicate that air pollution control can account for a third of the capital costs for a new coal-fired power plant. This article outlines the current status of regulations on air pollutant emissions from coal-fired plants, describes action being taken to meet regulations and its potential impacts on coal utilisation. The article focuses on sulphur dioxide and nitrogen oxides, which have seen major recent developments in regulations and control methods.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wen-jie Zou ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Ting Teng ◽  
Kuei Ying Huang

Finding the balance between economic development and environmental protection is a major problem for many countries around the world. Air pollution caused by economic growth has caused serious damage to humans’ living environment, and as improving energy and resource efficiencies is the first priority, many countries are targeting to move towards a sustainable environment and economic development. This study uses the modified dynamic SBM (slack-based measure) model to explore the economic efficiency and air pollutants emission efficiency in Taiwan’s counties and cities from 2012 to 2015 by taking labor, motor vehicles, and electricity consumption as inputs and average disposable income as output. Particulate matter (PM2.5), nitrogen oxide emissions (NO2), and sulfur oxide emissions (SO2) are undesirable outputs, whereas factory fixed assets are a carry-over variable, and the results show the following: (1) the regions with the best overall efficiency between 2012 and 2015 include Taipei City, Keelung City, Hsinchu City, Chiayi City, and Taitung County; (2) in counties and cities with poor overall efficiency performance, the average disposable income per household has no significant relationship with air pollutant emissions; (3) in counties and cities where overall efficiency is poor, the average efficiency of each household’s disposable income is small; and (4) except for the five counties and cities with the best overall performance, the three air pollutants in the other fourteen counties and cities are high. Overall, the air pollution of most areas needs improvement.


2016 ◽  
Vol 113 (28) ◽  
pp. 7756-7761 ◽  
Author(s):  
Jun Liu ◽  
Denise L. Mauzerall ◽  
Qi Chen ◽  
Qiang Zhang ◽  
Yu Song ◽  
...  

As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.


2015 ◽  
Vol 15 (19) ◽  
pp. 11411-11432 ◽  
Author(s):  
G. Janssens-Maenhout ◽  
M. Crippa ◽  
D. Guizzardi ◽  
F. Dentener ◽  
M. Muntean ◽  
...  

Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.


Sign in / Sign up

Export Citation Format

Share Document