Effect of Silicon Fertilizer and Straw Return on the Maize Yield and Phosphorus Efficiency in Northeast China

2020 ◽  
Vol 52 (2) ◽  
pp. 116-127
Author(s):  
Mabagala Frank Stephano ◽  
Yuhui Geng ◽  
Guojun Cao ◽  
Lichun Wang ◽  
Wang Meng ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.



2017 ◽  
Vol 63 (No. 11) ◽  
pp. 498-504 ◽  
Author(s):  
Jiang Wenting ◽  
Liu Xiaohu ◽  
Qi Wen ◽  
Xu Xiaonan ◽  
Zhu Yucui

Accurate estimating of the balanced nutrition for maize is necessary for optimizing fertilizer management to prevent nutrient supply surplus or deficiency. Data from 300 field experiments in the Northeast China conducted between 2006 and 2011 were gathered to study the characteristics of maize yield, and using the QUEFTS model to estimate the balanced nutrition at different yield potential. The average grain yield was 10 427 kg/ha, and average internal efficiencies were 54.3, 251.5 and 78.2 kg grain per kg plant nitrogen (N), phosphorus (P) and potassium (K), respectively. With the harvest index values < 0.40 as outliers were excluded, the model simulated a linear-parabolic-plateau curve for the balanced N, P and K uptake when the initial yield target increased to the yield potential levels of 10 000 to 14 000 kg/ha. When the yield target reached approximately 60–70% of the yield potential, 16.7 kg N, 3.8 kg P, and 11.4 kg K were required to produce 1000 kg grain. The corresponding internal efficiencies were 60.0, 265.7 and 88.0 kg grain per kg plant N, P and K, respectively. These results contributed to improving nutrient use efficiency, and to demonstrate that the QUEFTS model could be a promising approach for estimating the balanced nutrition.



Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1078
Author(s):  
Yin Wang ◽  
Yaqi Cao ◽  
Guozhong Feng ◽  
Xiaoyu Li ◽  
Lin Zhu ◽  
...  

To increase crop productivity while reducing environmental costs, an integrated soil–crop system management (ISSM) strategy was developed and successfully adopted in China. However, little information is available on the long-term ISSM effects on maize agronomic and environmental performance. Therefore, we evaluated the effects of ISSM with combining inorganic and organic fertilizers on maize productivity, N use efficiency (NUE) and N balance and losses as compared with farmers’ practice (FP) and high-yielding practice (HY), based on an 11-year field experiment in Northeast China. Maize yield in ISSM (11.7–14.3 Mg ha−1) achieved 97.7% of that in HY and was increased by 27% relative to FP. The excellent yield performance in ISSM was mainly attributed to optimum plant population structure and yield components. Annual N surplus in ISSM was only 7 kg ha−1, which was considerably lower than that in FP (52 kg ha−1) and HY (109 kg ha−1). Consequently, ISSM obtained significantly lower N losses and greenhouse gases emissions and higher NUE. In contrast to FP, crop performance in ISSM showing better sustainability and inter-annual stability. In conclusion, ISSM is an effective strategy to achieve long-term sustainable high crop yields and NUE with less environmental costs in the intensive agricultural system.







2016 ◽  
Vol 20 (12) ◽  
pp. 1-18 ◽  
Author(s):  
Zhijuan Liu ◽  
Xiaoguang Yang ◽  
Xiaomao Lin ◽  
Kenneth G. Hubbard ◽  
Shuo Lv ◽  
...  

Abstract Northeast China (NEC) is one of the major agricultural production areas in China, producing about 30% of China’s total maize output. In the past five decades, maize yields in NEC increased rapidly. However, farmer yields still have potential to be increased. Therefore, it is important to quantify the impacts of agronomic factors, including soil physical properties, cultivar selections, and management practices on yield gaps of maize under the changing climate in NEC in order to provide reliable recommendations to narrow down the yield gaps. In this study, the Agricultural Production Systems Simulator (APSIM)-Maize model was used to separate the contributions of soil physical properties, cultivar selections, and management practices to maize yield gaps. The results indicate that approximately 5%, 12%, and 18% of potential yield loss of maize is attributable to soil physical properties, cultivar selection, and management practices. Simulation analyses showed that potential ascensions of yield of maize by improving soil physical properties PAYs, changing to cultivar with longer maturity PAYc, and improving management practices PAYm for the entire region were 0.6, 1.5, and 2.2 ton ha−1 or 9%, 23%, and 34% increases, respectively, in NEC. In addition, PAYc and PAYm varied considerably from location to location (0.4 to 2.2 and 0.9 to 4.5 ton ha−1 respectively), which may be associated with the spatial variation of growing season temperature and precipitation among climate zones in NEC. Therefore, changing to cultivars with longer growing season requirement and improving management practices are the top strategies for improving yield of maize in NEC, especially for the north and west areas.



2014 ◽  
Vol 137 ◽  
pp. 43-49 ◽  
Author(s):  
Qingjie Wang ◽  
Caiyun Lu ◽  
Hongwen Li ◽  
Jin He ◽  
Khokan Kumer Sarker ◽  
...  




Author(s):  
Luoman Pu ◽  
Shuwen Zhang ◽  
Jiuchun Yang ◽  
Liping Chang ◽  
Shuting Bai

Maize yield has undergone obvious spatial and temporal changes in recent decades in Northeast China. Understanding how maize potential yield has changed over the past few decades and how large the gaps between potential and actual maize yields are is essential for increasing maize yield to meet increased food demand in Northeast China. In this study, the spatial and temporal dynamics of maize potential yield in Northeast China from 1990 to 2015 were simulated using the Global Agro-ecological Zones (GAEZ) model at the pixel level firstly. Then, the yield gaps between actual and potential yields were analyzed at city scale. The results were the following. (1) The maize potential yield decreased by about 500 kg/ha and the potential production remained at around 260 million tonnes during 1990–2000. From 2000 to 2015, the maize potential yield and production increased by approximately 1000 kg/ha and 80 million tonnes, respectively. (2) The maize potential yield decreased in most regions of Northeast China in the first decade, such as the center area (CA), south area (SA), southwest area (SWA), and small regions in northeast area (NEA), due to lower temperature and insufficient rainfall. The maize potential yield increased elsewhere. (3) The maize potential yield increased by more than 1000 kg/ha in the center area (CA) in the latter 15 years, which may be because of the climate warming and sufficient precipitation. The maize potential yield decreased elsewhere and Harbin in the center area (CA). (4) In 40 cities of Northeast China, the rates of actual yield to potential yield in 17 cities were higher than 80%. The actual yields only attained 50–80% of the potential yields in 20 cities. The gaps between actual and potential yields in Hegang and Dandong were very large, which need to be shrunk urgently. The results highlight the importance of coping with climate change actively, arranging crop structure reasonably, improving farmland use efficiency and ensuring food security in Northeast China.





Sign in / Sign up

Export Citation Format

Share Document