Optimisation of biodiesel production from Eisenia fetida earthworms oil using the transesterification method

2021 ◽  
pp. 1-11
Author(s):  
Faezeh Mohammadi ◽  
Salar Moradi ◽  
Neda Azimi ◽  
Ebrahim Ebrahimi
2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Nguyen Thi Phuong Thao ◽  
Nguyen Thanh Tin ◽  
Bui Xuan Thanh

2012 ◽  
pp. 23-32
Author(s):  
Norzita Ngadi ◽  
Hajar Alias ◽  
Siti Aktar Ishak

In this study, production of biodiesel from new and used palm and soybean oils was carried out using a transesterification method. The effect of catalyst amount used towards the percentage yield, soap content and heat of combustion of the biodiesel produced was investigated. The soap content and heat combustion of the biodiesel were determined using titration (AOCS Cc-95) and heat calorimeter bomb (ASTM D240-09), respectively. The results showed that catalyst concentration of 0.5 w/w% gave the best result in terms of yield of biodiesel produced from both palm and soybean oils. However, the quality of biodiesel (i.e. soap content and heat of combustion) produced from palm and soybean oils behaved differently towards catalyst concentration. Overall, both oils (palm and soybean), either new or used oil apparently showed no significant difference in term of yield or qualities of biodiesel produced. This indicates that the used oil has high potential as an economical and practical future source of biodiesel.


2010 ◽  
Vol 658 ◽  
pp. 73-76
Author(s):  
Yotwadee Hawangchu ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Glycerol waste is by-product from the manufacturing of biodiesel by transesterification method containing impurities such as fatty acid, alcohol, spent catalyst, soap and water. Conversion of this waste to value added fuel products would not only improve economic of biodiesel production but also reduce environmental impact from this process. In this work, thermal conversion of glycerol waste by microwave that induced the heat required for initiating the reaction was carried out in a fixed bed quartz reactor using silicon carbide as the bed medium for microwave receptor as well as supporter for nickel catalyst. For non-catalytic reaction at 220W (700°C), carbon and hydrogen conversions were 22.89% and 19.59%, respectively. Gas production was 0.12 L/min syngas, 0.07 L/min H2, 0.82 MJ/m3 of LHV, and 1.27 H2/CO. In catalytic test, the highest syngas, H2, and LHV of 0.41 L/min, 0.23 L/min, and 9.18 MJ/m3, respectively, were obtained from 1%Ni/SiC while the highest H2/CO of 2.72 was obtained from 0.5%Ni/SiC. The 1%Ni/SiC test also resulted in the highest conversion of carbon and hydrogen as much as 79.50% and 83.26%, respectively. For comparison between fresh and regenerated catalysts, it was found that fresh catalyst performed significantly better that regenerated one in term of higher total conversion which may due to sodium deposition on spent catalyst surface.


2014 ◽  
Vol 31 (2) ◽  
pp. 90 ◽  
Author(s):  
S Ismail ◽  
S. A Abu ◽  
R Rezaur ◽  
H Sinin

In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB) through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.


2017 ◽  
Vol 29 (1) ◽  
pp. 14-18
Author(s):  
Mohammad Kaniz Ferdous ◽  
M Rahim Uddin ◽  
M Rakib Uddin ◽  
Maksudur R Khan ◽  
MA Islam

In this paper, biodiesel production from Bakul oil (Mimusops Elengi) by three-step method and optimization were studied by the application of factorial design. Bakul Oil (BO) was extracted from Bakul seeds by press method and soxhlet extraction method. Bakul seed was collected from the local sources. The raw oil, containing 11.1 wt% Free Fatty Acid (FFA) and viscosity was 76.62 mm2/s. Because of higher FFA content of BO transesterification method can’t be applied, so three-step method was conducted for biodiesel production and optimization. In the three-step method, the first step was saponification of the oil followed by acidification to produce FFA and finally esterification of FFA to produce biodiesel. The reaction parameters in saponification, acidification and esterification reaction were optimized. Silica gel was used during esterification reaction to adsorb water produced in the reaction and silica gel to FFA ratio was 1:10 wt/wt. Hence the reaction rate was increased and finally the FFA was reduced to 0.70 wt%. A factorial design was studied for esterification reaction and developed to obtain the higher yield of biodiesel. Finally various properties of biodiesel such as FFA, viscosity, specific gravity, cetane index, pour point, flash point were measured and compared with biodiesel and petro-diesel standard.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 14-18


2015 ◽  
Vol 1113 ◽  
pp. 518-522 ◽  
Author(s):  
Mardhiah Mohamad ◽  
Norzita Ngadi ◽  
Nurul Saadiah Lani

Transesterification method was carried out in biodiesel production from cooking oil (CO). Calcium oxide (CaO) was selected as the best catalyst. This study investigated the effects of percentage conversion of oil to biodiesel from methanol to oil molar ratio and catalyst amount. Brunauer, Emmett and Teller (BET) test method was used to analyze the surface area. The results obtained showed that using 200°C calcined CaO catalyst, 76.67 % biodiesel was successfully converted from oil. This indicates that the cooking oil (CO) has potential to become a future source of biodiesel. 0.5 w/w% catalyst dosages, 3:5 oil to methanol molar ratio and 65°C reaction temperature are the best condition for the biodiesel conversion from oil. This study also shows that conversion of cooking oil is significantly affected by methanol to oil molar ratio and catalyst amount.


2013 ◽  
Vol 1 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Nguyen Thi Phuong Thao ◽  
◽  
Nguyen Thanh Tin ◽  
Bui Xuan Thanh

2017 ◽  
Vol 79 (5-3) ◽  
Author(s):  
Nur Syakirah Talha ◽  
Sarina Sulaiman ◽  
Azlin Suhaida Azmi

In-situ transesterification method is a simplified method for biodiesel production where the oil was simultaneously extracted and transesterified into alkyl ester in-situ in one single process. This process combines the steps of lipid (oil) extraction and transesterification. The alcohol used was methanol as it is widely available and economically feasible. In this study, in situ transesterification was conducted using solid coconut waste and a novel heterogeneous catalyst synthesized from eggshells and solid coconut waste by calcination. Reaction temperature, catalyst loading, and methanol to solid ratio were varied from 70 to 120˚C, 0.5 to 10.5 wt %, and 8:1 to 12:1 respectively. Meanwhile, reaction time was fixed to 3 hrs. Heterogeneous catalyst can help to reduce the steps in separation and purification of the product. Moreover, utilizing waste in the production can lower the production cost as well as help to save and clean the environment. The highest biodiesel yield was observed at the condition of 95˚C, 0.5 wt % catalyst, and 10:1 methanol to solid ratio.


2020 ◽  
Vol 34 (1) ◽  
pp. 75-82
Author(s):  
Gloria Ihuoma Ndukwe ◽  
Gloria Ihuoma Ndukwe ◽  
Anselem Tochukwu Ugboaja

Increasing global energy demands have led to increased search for alternative sources of fuel. Due to its similarities with petroleum-based diesel, biodiesel arose as a potential replacement for diesel. In this study, biodiesel was produced from the seed oil of Vitex doniana (black plum) using a two-step catalyzed transesterification method. The biodiesel produced was also characterized. Physico-chemical analyses carried out on the produced biodiesel gave strong indication that it can serve as an alternative feedstock, having recorded a comparable flash point of 110 °C to American Society of Testing Materials and European Committee for Standardization standards; though kinematic viscosity measurements showed biodiesel products of relatively high viscosity which has the tendency to leave deposits on combustion. Spectroscopic analyses indicated successful transesterification with 95-98% biodiesel yield.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 75-82.    DOI: https://dx.doi.org/10.4314/bcse.v34i1.7


Sign in / Sign up

Export Citation Format

Share Document