High-Performance and Low-Energy Approximate Full Adder Design for Error-Resilient Image Processing

Author(s):  
Seyed Hossein Shahrokhi ◽  
Mehdi Hosseinzadeh ◽  
Midia Reshadi ◽  
Saeid Gorgin
2021 ◽  
pp. 2150016
Author(s):  
Yavar Safaei Mehrabani ◽  
Mona Parsapour ◽  
Mona Moradi ◽  
Mehdi Bagherizadeh

Employing inexact arithmetic circuits in error-resilient applications results in reduction of hardware-level metrics such as power consumption, delay and occupied area. These criteria are very important in portable applications because they are battery limited. Full Adder cell is as a building block of many arithmetic circuits. Therefore, it can influence the performance of the entire digital system. This paper presents a novel low-power and high-speed design of one-bit inexact full adder cell based on 32-nm (CNFET) technology for error resilient applications. This design technique can be utilized in various applications particularly in image processing. The presented design employs capacitive threshold logic (CTL) approach which significantly reduces the number of transistors. The peak signal-to-noise ratio (PSNR) is considered to evaluate accuracy of circuits at application level. Then extensive simulations regarding various power supplies, temperatures and loads at transistor level are performed to measure power consumption and propagation delay criteria. Moreover, some new metrics are introduced to trade-off between application and hardware level parameters. Comprehensive simulations demonstrate the supremacy of the proposed cell than others.


SPIN ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1950013 ◽  
Author(s):  
Abdolah Amirany ◽  
Ramin Rajaei

Deep submicron conventional complementary metal oxide semiconductor (CMOS) technology is facing various issues such as high static power consumption due to the increasing leakage currents. In recent years, spin-based technologies like magnetic tunnel junctions (MTJ) have emerged and shown some fascinating features to overcome the aforesaid issues of CMOS technology. The hybrid MTJ/CMOS circuits offer low power consumption, nonvolatility, and high performance. This paper proposes two novel hybrid MTJ/CMOS approximate full-adder circuits (AXMA) for low power approximate computing-in-memory architectures. The proposed AXMAs offer low area, high sensing speed, considerable lower energy consumption, and the lowest power delay product (PDP) than the considered antecedent counterparts. The proposed AXMAs also introduce the advantage of full nonvolatility to the systems. This feature allows the system to be powered off during the idle modes in order to reduce the static power without the need for any retention parts or loss of data. Applications of the proposed AXMAs in digital image processing and their effect on the quality of images considering some relevant metrics like peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) are also investigated using the MATLAB software.


2012 ◽  
Vol 17 (4) ◽  
pp. 207-216 ◽  
Author(s):  
Magdalena Szymczyk ◽  
Piotr Szymczyk

Abstract The MATLAB is a technical computing language used in a variety of fields, such as control systems, image and signal processing, visualization, financial process simulations in an easy-to-use environment. MATLAB offers "toolboxes" which are specialized libraries for variety scientific domains, and a simplified interface to high-performance libraries (LAPACK, BLAS, FFTW too). Now MATLAB is enriched by the possibility of parallel computing with the Parallel Computing ToolboxTM and MATLAB Distributed Computing ServerTM. In this article we present some of the key features of MATLAB parallel applications focused on using GPU processors for image processing.


Author(s):  
Hiroshi Yamamoto ◽  
Yasufumi Nagai ◽  
Shinichi Kimura ◽  
Hiroshi Takahashi ◽  
Satoko Mizumoto ◽  
...  

Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

Solar RRL ◽  
2021 ◽  
pp. 2100450
Author(s):  
Bing-Huang Jiang ◽  
Yi-Peng Wang ◽  
Yu-Wei Su ◽  
Jia-Fu Chang ◽  
Chu-Chen Chueh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document