Mechanical properties of adhesively single lap-bonded joints reinforced with multi-‌‌‌walled carbon nanotubes and silica nanoparticles

2016 ◽  
Vol 93 (11) ◽  
pp. 896-913 ◽  
Author(s):  
M. R. Ayatollahi ◽  
A. Nemati Giv ◽  
S. M. J. Razavi ◽  
H. Khoramishad
2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1480 ◽  
Author(s):  
Grzegorzewski ◽  
Benhaim ◽  
Alkotzer ◽  
Zelinger ◽  
Yaakov ◽  
...  

A simple and effective way to prepare multi-walled carbon nanotubes (MWNT)//silica hybrid microcapsules (colloidosomes) is presented. These microcapsules have been generated by emulsion templating in a biphasic oil-in-water (o/w) system. Two trialkoxysilanes of complementary polarity, (3-aminopropyl)triethoxysilane (APTES) and dodecyltriethoxysilane (DTES), were used to chemically immobilize the silica nanoparticles at the o/w interface and stabilize the as-generated Pickering emulsions. The effects of varying the o/w ratio and the concentration of the added solids on the type of emulsion formed, the oil droplet size, as well as the emulsion stability have been investigated. The emulsion phase fraction was dependent on the silica content while the droplet size increased with increasing oil volume percentage. A solid shell emerged around the oil droplets from copolymerization between silane monomers. The thickness of the resulting shells was several hundreds of nm. Although MWNTs and silica nanoparticles both were co-assembled at the o/w interface, silica has shown to be the sole stabilizer, with APTES being crucial for the formation of the shell structure. Drop-casting of the emulsion and air-drying led to hierarchical open porous MWNT-silica nanocomposites. These new structures are promising as electrically conductive thin films for variety of applications, such as electro-optics, encapsulation, or chemical sensing.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Sign in / Sign up

Export Citation Format

Share Document